29.12.2012 Views

Growth, Differentiation and Sexuality

Growth, Differentiation and Sexuality

Growth, Differentiation and Sexuality

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

that is attracted by pheromone stimulation to<br />

fuse with the conidia that act as male gametes<br />

(Chap. 16, this volume). The conidial nucleus must<br />

migrate through the trichogyne cells (Chap. 20,<br />

this volume), in much the same way that the donor<br />

nucleus migrates through recipient monokaryotic<br />

cells in C. cinereus mating (Fig. 17.2). At the base<br />

of the trichogyne in N. crassa, nuclear sorting<br />

occurs to establish binucleate cells (ascogenous<br />

hyphae) that divide in exactly the same way as<br />

do dikaryotic cells of homobasidiomycetes <strong>and</strong><br />

C. neoformans. These cells contain one nucleus<br />

from each mate, <strong>and</strong> tip cell division involves<br />

a structure analogous to the clamp connection<br />

(crozier; Chap. 20, this volume). It is not surprising<br />

that, in N. crassa, pheromone signalling has been<br />

shown to be essential after trichogyne fusion (Kim<br />

<strong>and</strong> Borkovich 2004) – it is required to maintain<br />

the dikaryophase.<br />

Whydosomanyofthesefungihavealong<br />

dikaryophase? Diploidy is not a normal feature of<br />

thefilamentousfungallifecycle,<strong>and</strong>nuclearfusion<br />

generally occurs only in cells specialised for meiosis.<br />

The dikaryophase provides a way of amplifying<br />

acompatiblepairofnucleisothatlargenumbersof<br />

meiotic products can finally be derived from them.<br />

For example, a single fruiting body of C. cinereus<br />

may produce 10 7 meiocytes (Pukkila <strong>and</strong> Casselton<br />

1991), all having a diploid nucleus derived from<br />

the same dikaryotic nuclear pair. In filamentous ascomycetes,<br />

the dikaryophase is of limited duration<br />

but in mushrooms it probably represents the predominant<br />

mycelial state in nature, <strong>and</strong> can exist<br />

for hundreds of years, colonising entire woodl<strong>and</strong>s<br />

(Smith et al. 1992).<br />

Acknowledgements. We are particularly grateful to June<br />

Kwon-Chung for describing the C. neoformans life cycle,<br />

Tim James for sharing unpublished data, <strong>and</strong> Joe Heitman<br />

for helpful discussion. L.A. Casselton is supported by a Leverhulme<br />

Trust Emeritus Fellowship <strong>and</strong> work at Warwick<br />

HRI is supported by the Biotechnology <strong>and</strong> Biological Sciences<br />

Research Council of the UK.<br />

References<br />

Alic M, Letzring C, Gold MH (1987) Mating system <strong>and</strong><br />

basidiospore formation in the lignin-degrading basidiomycete<br />

Phanerochaete chrysosporium.ApplEnviron<br />

Microbiol 53:1464–1469<br />

AndersonCM,WillitsDA,KostedPJ,FordEJ,Martinez-<br />

Espinoza AD, Sherwood JE (1999) Molecular analysis<br />

of the pheromone <strong>and</strong> pheromone receptor genes of<br />

Ustilago hordei. Gene 240:89–97<br />

Mating Type Genes in Basidiomycetes 371<br />

Asante-Owusu RN, Banham AH, Böhnert HU, Mellor EJC,<br />

Casselton LA (1996) Heterodimerization between two<br />

classes of homeodomain proteins in the mushroom Coprinus<br />

cinereus brings together potential DNA-binding<br />

<strong>and</strong> activation domains. Gene 172:25–31<br />

Badalyan SM, Polak E, Hermann R, Aebi M, Kües U (2004)<br />

Role of peg formation in clamp cell fusion of homobasidiomycete<br />

fungi. J Basic Microbiol 44:167–177<br />

Bakkeren G, Kronstad JW (1993) Conservation of the bmating-type<br />

gene-complex among bipolar <strong>and</strong> tetrapolar<br />

smut fungi. Plant Cell 5:123–136<br />

Bakkeren G, Kronstad JW (1994) Linkage of mating-type<br />

loci distinguishes bipolar from tetrapolar mating in<br />

basidiomycetous smut fungi. Proc Natl Acad Sci USA<br />

91:7085–7089<br />

Banham AH, Asante Owusu RN, Göttgens B, Thompson<br />

SAJ, Kingsnorth CS, Mellor EJC, Casselton LA<br />

(1995) An N-terminal dimerization domain permits<br />

homeodomain proteins to choose compatible partners<br />

<strong>and</strong> initiate sexual development in the mushroom<br />

Coprinus cinereus. Plant Cell 7:773–783<br />

Banuett F (1995) Genetics of Ustilago maydis, a fungal<br />

pathogen that induces tumors in maize. Annu Rev<br />

Genet 29:179–208<br />

Bölker M, Urban M, Kahmann R (1992) The a mating type<br />

locus of U. maydis specifies cell signaling components.<br />

Cell 68:441–450<br />

Bortfeld M, Auffarth K, Kahmann R, Basse CW (2004) The<br />

Ustilago maydis a2 mating-type locus genes Iga2 <strong>and</strong><br />

rga2 compromise pathogenicity in the absence of the<br />

mitochondrial p32 family protein Mrb1. Plant Cell<br />

16:2233–2248<br />

Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001)<br />

Identification of genes in the bW/bE regulatory cascade<br />

in Ustilago maydis. Mol Microbiol 42:1047–1063<br />

Brachmann A, Schirawski J, Müller P, Kahmann R (2003)<br />

An unusual MAP kinase is required for efficient penetration<br />

of the plant surface by Ustilago maydis. EMBO<br />

J 22:2199–2210<br />

Brown AJ, Casselton LA (2001) Mating in mushrooms: increasing<br />

the chances but prolonging the affair. Trends<br />

Genet 17:393–400<br />

Buller AHR (1931) Researches on Fungi, vol 4. Longmans,<br />

Green, London<br />

Casselton LA (2002) Mate recognition in fungi. Heredity<br />

88:142–147<br />

Casselton LA, Olesnicky NS (1998) Molecular genetics of<br />

mating recognition in basidiomycete fungi. Microbiol<br />

Mol Biol Rev 62:55–70<br />

Christensen JJ (1931) Studies on the genetics of Ustilago<br />

zeae. Phytopathol Z 4:129–188<br />

Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating<br />

types <strong>and</strong> sexual development in filamentous ascomycetes.<br />

Microbiol Mol Biol Rev 61:411–428<br />

Cummings WJ, Celerin M, Crodian J, Brunick LK, Zolan ME<br />

(1999) Insertional mutagenesis in Coprinus cinereus:<br />

use of a dominant selectable marker to generate tagged,<br />

sporulation-defective mutants. Curr Genet 36:371–382<br />

Davidson RC, Moore TDE, Odom AR, Heitman J (2000)<br />

Characterization of the MF α pheromone of the human<br />

fungal pathogen Cryptococcus neoformans. Mol<br />

Microbiol 38:1017–1026<br />

Day PR (1960) The structure of the A mating-type locus in<br />

Coprinus lagopus. Genetics 45:641–650

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!