28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00559107, version 1 - 24 Jan 2011<br />

5.1.3.2 Preparation for the Proof<br />

5.1 Multiple Inputs, Multiple Outputs Case<br />

First, we remind the reader of the change of variables that we performed in Subsection 3.5.<br />

− ɛ = x − z is the estimation error,<br />

− ˜x = ∆x,<br />

− ˜ b(., u) =∆b(∆ −1 ., u),<br />

− ˜ b ∗ (., u) =∆b(∆ −1 ., u)∆ −1 .<br />

The definition of the matrix ∆ gives us the following property.<br />

Lemma 51<br />

1. The vector field ˜ b(˜x, u) has the same Lipschitz constant as b(x, u).<br />

2. The matrix ˜ b ∗ (˜x, u) has the same bound as the Jacobian of b(x, u)<br />

Remark 52<br />

This lemma is valid for both the definition of Chapter 3 <strong>and</strong> the definition of Section 5.1.2<br />

provided above. The proof is given in [57], pg. 215. We reproduce the proof for the multiple<br />

output case since it allows us to justify the definition of ∆.<br />

Proof.<br />

Recall that θ(t) ≥ 1.<br />

1. Consider a component of ˜b(., u) of the form ˜b k i (., u) with i ∈ {1, ..., ny} <strong>and</strong> k ∈<br />

{1, ..., ni − 1}. From the change of variables ˜b(., u) =∆b(∆−1 ., u) we have:<br />

˜k 1<br />

bi (x, u) =<br />

n∗ − ni + k − 1 b<br />

�<br />

θ n∗−ni 1<br />

xi , θ n∗−ni+1 2<br />

xi , ...,θ n∗ �<br />

−ni+k−1 k<br />

xi ,u .<br />

We denote Lb as the Lipschitz constant of b(., u) w.r.t. the variable x:<br />

�<br />

�<br />

�˜b k i (x, u) − ˜b k �<br />

�<br />

i (z, u) �<br />

=<br />

≤<br />

1<br />

θn∗ �<br />

�b −ni +k−1<br />

� θn∗−nix1 i , ...,θ n∗−ni+k−1xk i ,u �<br />

−b � θn∗−niz1 i , ...,θ n∗−ni+k−1zk i ,u �� �<br />

Lb<br />

θn∗ �<br />

�<br />

−ni +k−1<br />

� θn∗−nix1 i , ...,θ n∗−ni+k−1xk i ,u �<br />

− � θn∗−niz1 i , ...,θ n∗−ni+k−1zk i ,u �� �<br />

Lb<br />

≤<br />

θn∗−ni +k−1 θn∗−ni+k−1 � � � x1 i , ..., xki ,u� − � z1 i , ..., zk i ,u��� �<br />

= Lb<br />

� � x1 i , ..., xki ,u� − � z1 i , ..., zk i ,u��� .<br />

(5.5)<br />

Therefore the Lipschitz constant of b(., .) is the same in the two coordinate systems.<br />

Consider now an element of the form ˜b ni<br />

i (., u). Such an element can be a function of<br />

the full state. First of all we note that when n ∗ = max<br />

i∈{1,...,ny} ni we have:<br />

� � ∆ −1 x − ∆ −1 z � �≤θ n∗ −1 �x − z�.<br />

98

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!