28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00559107, version 1 - 24 Jan 2011<br />

5.2 Continuous-discrete Framework<br />

with qm > 0 such that qmId < Q (<strong>and</strong> omitting to write the control variable u).<br />

From (5.39) we can deduce two bounds: the first bound, the local bound, will be useful<br />

when ˜ε ′ ˜ S˜ε (t) is small independent of the value of θ. The second bound, the global bound,<br />

will be useful mainly when ˜ε ′ ˜ S˜ε (t) is not in the neighborhood of 0.<br />

Global bound: Starting from:<br />

�<br />

�<br />

�˜b (˜z) − ˜b (˜x) − ˜b ∗ �<br />

�<br />

(˜z)˜ε � ≤ 2Lb �˜ε� ,<br />

together with α Id ≤ ˜ S ≤ β Id (Lemma 66), (5.39) becomes<br />

d˜ε ′ ˜ S˜ε (t)<br />

dt<br />

≤<br />

�<br />

−αqmθ +4 β<br />

α Lb<br />

�<br />

˜ε ′ S˜ε ˜ (t) . (5.40)<br />

Local bound: Using Lemma 56<br />

�<br />

�<br />

�˜b (˜z) − ˜b (˜x) − ˜b ∗ �<br />

�<br />

(˜z)˜ε � ≤ Kθ n−1 �˜ε� 2 ,<br />

which because 1 ≤ θ ≤ 2θ1, implies that<br />

The fact that �˜ε� 3 =<br />

d˜ε ′ ˜ S˜ε (t)<br />

dt<br />

� 3<br />

�˜ε�<br />

2� 2<br />

≤−αqm˜ε ′ S˜ε ˜ (t)+2K (2θ1) n−1 � �<br />

�<br />

�S˜ �<br />

� �˜ε� 3 .<br />

≤<br />

� 1<br />

α ˜ε′ ˜ S˜ε (t)<br />

� 3<br />

2<br />

, allows us to write<br />

˜ε ′ S˜ε ˜ (t) ≤−αqm˜ε ′ S˜ε ˜<br />

2K (2θ1)<br />

(t)+ n−1 β<br />

α 3<br />

2<br />

Let us apply Lemma 55: If there exists ξ such that<br />

then for any kδt ≤ ξ ≤ t ≤ (k + 1)δt<br />

If γ ∈ R such that<br />

then ˜ε ′ ˜ S˜ε (ξ) ≤ γ implies<br />

˜ε ′ ˜ S˜ε (ξ) ≤<br />

α5q2 m<br />

16 K2 (2θ1) 2n−2 ,<br />

β2 ˜ε ′ ˜ S˜ε (t) ≤ 4˜ɛ ′ ˜S˜ε (ξ)e −αqm(t−ξ) .<br />

�<br />

˜ε ′ � 3<br />

2<br />

S˜ε ˜ (t) . (5.41)<br />

�<br />

1 αε∗ γ ≤ 2n−2 min<br />

(2θ1) 4β , α5q2 m<br />

16 K2β 2<br />

�<br />

, (5.42)<br />

˜ε ′ ˜ S˜ε (t) ≤<br />

αε ∗<br />

β (2θ1) 2n−2 e−αqm(t−ξ) . (5.43)<br />

Given any arbitrary value of δt, there exists kT ∈ N such that T ∈ [kT δt;(kT + 1)δt[. From<br />

the global bound (5.40), with θk ≥ 1, for all k ∈ N:<br />

˜ε ′ ′ β<br />

S˜ε ˜ (T ) ≤ ˜ε ˜S˜ε (kT δt)e (−αqm+4 α Lb)(T −kT δt)<br />

.<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!