28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00559107, version 1 - 24 Jan 2011<br />

The Riccati equation turns into<br />

d ˜ S<br />

dt = ˙ θ<br />

θ N∆−1 S∆ −1 + ˙ θ<br />

3.5 Preparation for the Proof<br />

θ ∆−1S∆−1N − ∆−1 (A + b∗ (z, u)) ′<br />

S∆−1 −∆−1S (A + b∗ (z, u))∆ −1 + ∆−1C ′<br />

= ˙ �<br />

θ<br />

θ N ˜ S + ˜ �<br />

SN − � A∆−1 + b∗ (z, u) ∆−1�′ ∆ ˜ S<br />

R −1<br />

θ C∆−1<br />

−∆ −1 SQθS∆ −1<br />

− ˜ S∆ � A∆−1 + b∗ (z, u) ∆−1� + C ′<br />

�<br />

˙θ<br />

= θ θ2 �<br />

N ˜ S + ˜ � �<br />

SN − A ′ �<br />

S ˜ + SA ˜ + C ′<br />

R−1C − ˜ SQ˜ S<br />

− ˜ S∆b∗ (z, u) ∆−1 − ∆−1b∗′ (z, u) ∆ ˜ �<br />

S<br />

�<br />

F(θ,I)<br />

= θ θ2 �<br />

N ˜ S + ˜ � �<br />

SN − A ′ �<br />

S ˜ + SA ˜ + C ′<br />

R−1C − ˜ SQ˜ S<br />

�<br />

.<br />

The derivative of the Lyapunov function �ε ′ � S�ε is<br />

d˜ɛ ′ �<br />

S˜ɛ ˜<br />

dt = θ − F(θ,I)<br />

= θ<br />

R −1<br />

θ C − ˜ S∆Qθ∆ ˜ S<br />

− 1<br />

θ ˜ S ˜ b ∗ (˜z, u) − 1<br />

θ ˜ b ∗′<br />

(˜z, u) ˜ S<br />

θ2 N˜ɛ + A˜ɛ − ˜ S−1C ′<br />

R−1C˜ɛ + 1<br />

� ��′<br />

˜b<br />

θ (˜z, u) − ˜b (˜x, u) ˜S˜ɛ<br />

+θ˜ɛ ′ � F(θ,I)<br />

θ2 �<br />

N ˜ S + ˜ � �<br />

SN − A ′ �<br />

S ˜ + SA ˜ + C ′<br />

R−1C − ˜ SQ˜ S<br />

− 1<br />

�<br />

˜S ˜<br />

θ b∗ (˜z, u)+ ˜b ∗ ′<br />

(˜z, u) ˜ ��<br />

S ˜ɛ<br />

+θ˜ɛ ′ �<br />

S˜<br />

− F(θ,I)<br />

θ2 N˜ɛ + A˜ɛ − ˜ S−1C ′<br />

R−1C˜ɛ + 1<br />

� ��<br />

˜b<br />

θ (˜z, u) − ˜b (˜x, u)<br />

� ��<br />

˜b (˜z, u) − ˜b (˜x, u) − ˜b ∗ (˜z, u)˜ɛ .<br />

�<br />

−˜ɛ ′<br />

C ′<br />

R −1 C˜ɛ − ˜ɛ ′ ˜ SQ ˜ S˜ɛ + 2<br />

θ ˜ɛ′ ˜ S<br />

We consider that Q ≥ qm Id, <strong>and</strong> since �ε ′<br />

C ′<br />

R −1 C�ε ≥ 0<br />

(3.10)<br />

(3.11)<br />

d<br />

�<br />

�ε<br />

dt<br />

′ �<br />

S�ε � ≤−θqm�ε ′ � �<br />

S� 2 ′<br />

�ε +2�ε �S ˜b (�z, u) − ˜b (�x, u) − ˜∗ b (�z, u) �ε . (3.12)<br />

The theorem is proven using the inequality (3.12), which requires some knowledge of the<br />

properties of S. We can note that the equality (3.10) has a strong dependency on θ, which<br />

we must remove in order to derive properties for S. Indeed, for the moment we don’t know<br />

which values θ should reach during runtime. To determine these values, we introduce the<br />

time reparametrization dτ = θ (t) dt, or equivalently τ = � t<br />

0 θ (ν) dν. We denote:<br />

− ¯x (τ) = ˜x(t), ¯z (τ) = ˜z(t), <strong>and</strong> ε (τ) =�ε (t), <strong>and</strong><br />

− ¯ θ (τ) =θ(t), ū (τ) =u(t), <strong>and</strong> S (τ) = � S (t).<br />

We obtain the time derivative with respect to the time scale, τ, using the simple calculation:<br />

Therefore<br />

d¯ɛ<br />

dτ<br />

d¯ε<br />

dτ<br />

= d˜ε (t)<br />

dt<br />

dt<br />

dτ<br />

= 1<br />

θ (t)<br />

d˜ε (t)<br />

.<br />

dt<br />

I)<br />

= −F(θ,<br />

¯θ 2<br />

N ¯ε + A¯ε − ¯ S −1 C ′<br />

R −1 C ¯ε + 1<br />

� �<br />

˜b<br />

¯θ<br />

(¯z,ū) − ˜b (¯x, ū)<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!