28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00559107, version 1 - 24 Jan 2011<br />

therefore φu(τ,s) � d<br />

dτ h(τ)� φ ′<br />

u(τ,s)=F (τ), <strong>and</strong><br />

� τ<br />

h(τ) =h(0) +<br />

SinceΛ( τ) =φu(τ,s)h(τ)φ ′<br />

u(τ,s), thus φu(s, 0)Λ(0)φ ′<br />

0<br />

B.1 Bounds on the Riccati Equation<br />

φu(s, v)F (v)φ ′<br />

u(s, v)dv.<br />

Λ(τ) =<br />

u(s, 0) = h(0). Therefore:<br />

φu(τ,s)h(0)φ ′<br />

�� τ<br />

u(τ,s)+φu(τ,s) φu(s, v)F (v)φ<br />

0<br />

′<br />

�<br />

u(s, v)dv φ ′<br />

=<br />

u(t, s)<br />

φu(τ,s)φu(s, 0)Λ(0)φ ′<br />

u(s, 0)φ ′<br />

� τ<br />

u(τ,s)+ φu(τ,v)F (v)φ<br />

0<br />

′<br />

=<br />

u(τ,v)dv<br />

φu(τ, 0)Λ0φ ′<br />

� τ<br />

u(τ, 0) + φu(τ,v)F (v)φ ′<br />

u(τ,v)dv.<br />

0<br />

Let us take λ ∈ R ∗ , <strong>and</strong> define ˆ S = e λτ S. The differential equation associated to ˆ S is<br />

d<br />

dτ ˆ S(τ) = λeλτ S + eλτ dS<br />

dτ<br />

= λ ˆ S(τ) − A ′ S(τ) ˆ − S(τ)A ˆ − e−λτ S(τ)Q ˆ S(τ). ˆ<br />

This equation is of the form (B.12), with F (τ) = λ ˆ S(τ) − e−λτ SQ ˆ S. ˆ According to the<br />

computation above, we have:<br />

ˆS(τ) =φu(τ, 0) ˆ S(0)φ ′<br />

� τ �<br />

u(τ, 0) + φu(τ,v) λ ˆ S(v) − e −λv �<br />

SQ ˆ Sˆ<br />

φ ′<br />

u(τ,v)dv,<br />

<strong>and</strong> consequently<br />

S(τ) =φu(τ, 0)S0φ ′<br />

u(τ, 0)e −λτ � τ<br />

+ λ<br />

Lemma 92<br />

Let S : [0; e(S)[→ Sm be a maximal semi solution of<br />

If S(0) = S0 is positive definite then<br />

0<br />

0<br />

e −λ(τ−v) �<br />

φu(τ,v) S − SQS<br />

�<br />

φu(τ,v)dv.<br />

λ<br />

d<br />

S = −A′ S − SA − SQS.<br />

dτ<br />

e(S) =+∞ <strong>and</strong> S(τ) is positive definite for all τ ≥ 0.<br />

Thus, for any arbitrary time subdivision {τi}i∈N∗ the solution to the continuous discrete<br />

Riccati equation (B.1) is positive definite for all times provided that S0 is positive definite.<br />

Proof.<br />

Assume that S is not always positive definite. Let us define<br />

θ = inf (τ|S(τ) /∈ Sm(+)).<br />

In other words S(τ) ∈ Sm(+) for all τ ∈ [0; θ[. From Lemma 79:<br />

d<br />

dτ Tr(S) ≤−aTr(S) 2 +2bTr(S)<br />

145

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!