28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00559107, version 1 - 24 Jan 2011<br />

B.1 Bounds on the Riccati Equation<br />

Proof.<br />

Let M(t) be a primitive matrix of m(t), that is to say a matrix whose elements are the<br />

primitives of the elements of m(t). We have the identity<br />

� T<br />

m(v)dv = M(T ) − M(0) =<br />

0<br />

k�<br />

[M(τi) − M(τi−1)] .<br />

We can apply the Taylor-Lagrange expansion on all elements Mkl:<br />

i=1<br />

Mkl(τi−1) =Mkl(τi)+(τi−1 − τi) mkl(τi)+ (τi−1 − τi) 2<br />

where ξkl,i ∈ [τi−1, τi]. We have thus, the relation<br />

k�<br />

M(τi−1) =<br />

i=1<br />

k�<br />

M(τi)+<br />

i=1<br />

k�<br />

m(τi) ((τi−1 − τi)) +<br />

where (Rkl)i = m ′<br />

kl (ξkl,i), with ξkl,i ∈ [τi, τi−1]. Therefore<br />

� T<br />

m(v)dv −<br />

0<br />

i=1<br />

k�<br />

m(τi)(τi − τi−1) =<br />

i=1<br />

i=1<br />

= � �<br />

k (τi−1−τi)<br />

i=1<br />

2<br />

2<br />

Ri<br />

2<br />

k�<br />

i=1<br />

k�<br />

[M(τi) − M(τi−1)] −<br />

�<br />

.<br />

m ′<br />

kl (ξkl,i)<br />

�<br />

(τi−1 − τi) 2<br />

2<br />

Ri<br />

�<br />

k�<br />

((τi − τi−1)m(τi))<br />

We now use the definition of the matrix inequality. Let x be a non zero element of Rn ,<br />

x ′<br />

�<br />

k�<br />

�<br />

(τi−1 − τi)<br />

i=1<br />

2<br />

��<br />

Ri x<br />

2<br />

= 1<br />

k� �<br />

(τi−1 − τi)<br />

2<br />

i=1<br />

2 x ′<br />

�<br />

Rix<br />

≤ 1<br />

⎛<br />

⎞<br />

≤<br />

k�<br />

�<br />

⎝(τi−1<br />

2<br />

− τi) |xk||Rk,l|<br />

2<br />

i |xl| ⎠<br />

i=1<br />

k,l<br />

1 � �<br />

µ max |Rk,l|<br />

2 k,l,i<br />

i<br />

� �<br />

�k<br />

τi−1 − τi<br />

⎛<br />

⎝ �<br />

⎞<br />

|xk||xl| ⎠<br />

Thus giving the result.<br />

≤ 1 �<br />

µ max |Rk,l|<br />

2 k,l,i<br />

i<br />

≤ 1<br />

2<br />

�<br />

µ max |Rk,l|<br />

k,l,i<br />

i<br />

i=1<br />

� � k �<br />

� T 1<br />

2<br />

i=1<br />

τi−1 − τi<br />

�<br />

�<br />

2n �x� 2�<br />

.<br />

i=1<br />

1<br />

2<br />

k,l<br />

⎛<br />

⎝ �<br />

|xk| 2 + |xl| 2<br />

⎞<br />

⎠<br />

Remark 94<br />

Suppose that m = ψ ′<br />

(v, T )C ′<br />

Cψ(v, T ) where ψ(v, T ) is a resolvent matrix as in Lemma<br />

90. From the assumptions we put on our continuous discrete system, <strong>and</strong> the fact that the<br />

147<br />

k,l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!