28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00559107, version 1 - 24 Jan 2011<br />

5.1 Multiple Inputs, Multiple Outputs Case<br />

The dynamics of the error after the change of coordinates are given by:<br />

d˜ε<br />

dt<br />

= θ<br />

<strong>and</strong> the Riccati equation becomes<br />

d ˜ S<br />

dt<br />

= θ<br />

� F(θ,I)<br />

θ 2<br />

�<br />

F(θ, I)<br />

−<br />

θ2 N ˜ε + A˜ε − ˜ S −1 C ′<br />

R −1 C ˜ε + 1<br />

� �<br />

˜b (˜z, u) − ˜b (˜x, u)<br />

θ<br />

�<br />

, (5.8)<br />

�<br />

N ˜ S + ˜ SN<br />

�<br />

−<br />

�<br />

A ′ ˜ S + ˜ SA<br />

These two equations are used to compute the derivative of �ε ′ � S�ε:<br />

�<br />

+ C ′<br />

R−1C − ˜ SQ˜ S − 1<br />

θ ˜ S˜b ∗ (˜z, u) − 1<br />

θ ˜b ∗′ (˜z, u) ˜ �<br />

S .<br />

(5.9)<br />

d<br />

�<br />

�ε<br />

dt<br />

′ �<br />

S�ε � ≤−θqm�ε ′ � �<br />

S� 2 ′<br />

�ε +2�ε �S ˜b (�z, u) − ˜b (�x, u) − ˜∗ b (�z, u) �ε . (5.10)<br />

The proof of the theorem comes from the stability analysis of this last equation. This analysis<br />

requires the use of four lemmas, which we state below.<br />

5.1.3.3 Intermediary Lemmas<br />

The proofs of Lemmas 54 <strong>and</strong> 57 can be found in Sections 3.6 <strong>and</strong> 3.7 respectively. Lemmas<br />

55 <strong>and</strong> 56 are proven in Appendix B.2.<br />

Lemma 54 (Bounds for the Riccati equation)<br />

Let us consider the Riccati equation (5.8). We suppose that<br />

�<br />

�<br />

− the functions ai (u (t)), ��b ∗ i,j (z,u)<br />

�<br />

�<br />

�,<br />

−<br />

�<br />

�<br />

�<br />

� F(θ,I)<br />

�<br />

�<br />

�<br />

�are smaller than aM > 0 <strong>and</strong> if ai (u (t)) >am > 0<br />

θ 2<br />

− S (0) = S0 is symmetric definite positive, taken in a compact of the form aId ≤ S0 ≤<br />

bId, <strong>and</strong><br />

− θ(0) = 1<br />

Then there exist two constants 0 < α 0,t≥ 0} ⊂ R n be absolutely continuous, <strong>and</strong> satisfying:<br />

dx(t)<br />

dt ≤−k1x + k2x √ x,<br />

for almost all t>0, for k1, k2 > 0. Then, if x (0) < k2 1<br />

4k2 , x(t) ≤ 4 x (0) e<br />

2<br />

−k1t .<br />

Lemma 56 (Technical lemma two)<br />

Consider �b (˜z) − �b (˜x) − �b ∗ (˜z)˜ε as in the inequality (3.12) (omitting to write u in ˜ �<br />

b) <strong>and</strong><br />

�<br />

suppose θ ≥ 1. Then ��b (˜z) − �b (˜x) − �b ∗ �<br />

�<br />

(˜z)˜ε � ≤ Kθn−1 �˜ε� 2 , for some K>0.<br />

100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!