28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00559107, version 1 - 24 Jan 2011<br />

A.3 Uniform Continuity of the Resolvant<br />

Here G(x(s)) denotes a column vector field whose elements are the gi’s of Σ, <strong>and</strong> u denote<br />

the line vector composed of elements ui.<br />

Proof.<br />

First of all, let us write:<br />

x(t) = x0 +<br />

� �<br />

t<br />

f(x(s)) +<br />

Then<br />

�xn(t) − x(t)� ≤<br />

≤<br />

≤<br />

0<br />

i=nu �<br />

gi(x(s))ui(s)<br />

� t<br />

i=1<br />

= x0 + [f(x(s)) + u(s)G(x(s))] ds.<br />

0<br />

��<br />

�<br />

� t<br />

�<br />

�<br />

� [f(xn(s)) + un(s)G(xn(s)) − f(x(s)) − u(s)G(x(s))] ds�<br />

�<br />

��0<br />

� t �<br />

�<br />

� f(xn(s)) + un(s)G(xn(s)) + un(s)G(x (s))<br />

0<br />

−un(s)G(x (s)) − f(x(s)) − u(s)G(x(s)) � ds � �<br />

��<br />

� t �<br />

�<br />

� f(xn(s)) + un(s)G(xn(s)) − f(x(s)) − un(s)G(x (s))<br />

0<br />

� �<br />

�<br />

ds�<br />

�<br />

��<br />

� t �<br />

+ �<br />

� (un(s) − u(s))G(x (s)) � �<br />

�<br />

ds�<br />

� = A + B.<br />

The terms A <strong>and</strong> B are such that:<br />

B ≤<br />

��<br />

�<br />

� θ<br />

�<br />

sup �<br />

� (un(s) − u(s))G(x(s))ds�<br />

�<br />

θ∈[0;T ] 0<br />

� t<br />

� t<br />

A ≤ �f(xn(s)) − f(x(s))� ds + �(G(xn) − G(x)� |un(s)|ds.<br />

0<br />

0<br />

Because un converges ∗−weakly, the sequence (�un�∞ : n ∈ N) is bounded. The Lipschitz<br />

� t<br />

properties of f <strong>and</strong> G give A ≤ m �xn(s) − x(s)� ds.<br />

Therefore<br />

�xn(t) − x(t)� ≤ sup<br />

θ∈[0;T ]<br />

The result is given by Gronwall’s lemma.<br />

0<br />

0<br />

��<br />

�<br />

� θ<br />

�<br />

� t<br />

�<br />

� (un(s) − u(s))G(x(s))ds�<br />

� + m �xn(s) − x(s)� ds.<br />

0<br />

For all θ ∈ [0,T], for all δ > 0, let us consider a subdivision {tj} of [0,T], such that<br />

θ ∈ [ti,ti+1] <strong>and</strong> tj+1 − tj < δ for all j. We have,<br />

��<br />

�<br />

� θ<br />

�<br />

�<br />

� (un(s) − u(s))G(x(s))ds�<br />

� ≤<br />

��<br />

�<br />

� ti<br />

�<br />

�<br />

� (un(s) − u(s))G(x(s))ds�<br />

� +<br />

��<br />

�<br />

� θ<br />

�<br />

�<br />

� (un(s) − u(s))G(x(s))ds�<br />

� .<br />

0<br />

0<br />

127<br />

0<br />

�<br />

ti<br />

ds

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!