28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00559107, version 1 - 24 Jan 2011<br />

− ˜ b(., u) =∆b(∆ −1 ., u),<br />

− ˜ b ∗ (·,u)=∆b ∗ � ∆ −1 ·,u � ∆ −1 .<br />

3.5 Preparation for the Proof<br />

Since C = � a1(u) 0 . . . 0 � , <strong>and</strong> ∆= diag �� 1, θ −1 , ...,θ −(n−1)�� then C∆ = C. We<br />

have the following identity for the A(u) <strong>and</strong>∆:<br />

⎛<br />

⎞ ⎛<br />

0 a2 (u) 0 · · · 0 1 0 0 · · · 0<br />

⎜<br />

.<br />

⎜ 0 a3 (u) ..<br />

⎟ ⎜<br />

. ⎟ ⎜ 1<br />

⎟ ⎜ 0 θ 0 .<br />

A(u)∆= ⎜<br />

.<br />

⎜<br />

.<br />

.. . .. ⎟ ⎜<br />

0 ⎟ ⎜<br />

1<br />

⎟ ⎜ 0 0 θ<br />

⎝<br />

0 an (u) ⎠ ⎜<br />

⎝<br />

0 · · · 0<br />

2<br />

. .. .<br />

.<br />

. .. . .. 0<br />

1<br />

0 · · · · · · 0 θn−1 ⎞<br />

⎟<br />

⎠<br />

⎛ a2(u)<br />

0 θ 0 · · · 0<br />

⎜<br />

a3(u)<br />

⎜ 0 θ<br />

= ⎜<br />

⎝<br />

2<br />

. .. .<br />

.<br />

. .. . .. 0<br />

an(u)<br />

0 θn−1 ⎞<br />

⎟ =<br />

⎟<br />

⎠<br />

0 · · · 0<br />

1<br />

θ ∆A(u).<br />

This relation leads to the set of equalities:<br />

(a) ∆A = θA∆, (b) A ′<br />

∆ = θ∆A ′<br />

,<br />

(c) A∆−1 = θ∆−1A, (d) ∆−1A ′<br />

= θA ′<br />

∆−1 .<br />

Because we want to express the time derivative of ˜ε we need to know the time derivative of<br />

∆, as θ is time dependent. We simply write<br />

d∆<br />

dt =<br />

⎛<br />

d(1)<br />

dt 0 · · · 0<br />

⎜ � �<br />

⎜ d 1<br />

⎜ 0 dt θ<br />

.<br />

⎜<br />

⎝<br />

.<br />

.<br />

..<br />

�<br />

0<br />

d 1<br />

0 · · · 0 dt θn−1 ⎞<br />

⎟<br />

⎠<br />

�<br />

=<br />

⎛<br />

0 0 · · · 0<br />

⎜ 0 −<br />

⎜<br />

⎝<br />

˙ θ<br />

θ2 ⎞<br />

⎟<br />

. ⎟<br />

.<br />

. .. ⎟<br />

0 ⎠ ,<br />

0 · · · 0 − (n−1) ˙ θ<br />

θ n<br />

which can be rewritten as a multiplication of matrices with the use of<br />

N = diag ({0, 1, 2, ..., n − 1}). We obtain the two identities10 :<br />

d<br />

F(θ,I)<br />

(a) dt (∆) =− θ N∆ (b) d<br />

dt<br />

(3.7)<br />

� ∆ −1 � = F(θ,I)<br />

θ N∆−1 . (3.8)<br />

The dynamics of the error are given by:<br />

�<br />

˙ε =˙z − ˙x = A (u) − S −1 C ′<br />

R −1<br />

θ C<br />

�<br />

ε + b (z, u) − b (x, u) ,<br />

<strong>and</strong> the error dynamics after the change of variables are:<br />

d˜ε<br />

dt<br />

d∆ = dt ε + ∆˙ε<br />

= − ˙ θ<br />

θ<br />

10 remember that ˙ θ = F(θ, I).<br />

N∆ε + ∆<br />

�<br />

A (u) − S−1C ′<br />

R −1<br />

θ C<br />

�<br />

ε + ∆( b (z, u) − b (x, u))<br />

= − ˙ θ<br />

θ N ˜ε + θA (u)˜ε − θ∆S−1∆∆−1C ′<br />

R−1C∆−1∆ε �<br />

= θ − F(θ,I)<br />

θ2 N ˜ε + A˜ε − ˜ S−1C ′<br />

R−1C ˜ε + 1<br />

� ��<br />

˜b<br />

θ (˜z, u) − ˜b (˜x, u) .<br />

45<br />

+∆b � ∆ −1 ˜z, u � − ∆b � ∆ −1 ˜x, u �<br />

(3.9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!