28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00559107, version 1 - 24 Jan 2011<br />

B.2 Proofs of the Technical Lemmas<br />

B.2 Proofs of the Technical Lemmas<br />

Lemma 97 ([38]) Let {x (t) > 0,t≥ 0} ⊂ R n be absolutely continuous, <strong>and</strong> satisfying:<br />

dx(t)<br />

dt ≤−k1x + k2x √ x,<br />

for almost all t>0, for k1, k2 > 0. Then, if x (0) < k2 1<br />

4k2 , x(t) ≤ 4 x (0) e<br />

2<br />

−k1t .<br />

Proof.<br />

We make three successive change of variables: y = √ x, z = 1<br />

y <strong>and</strong> w(t) =e− k 1 2 t z(t).<br />

Then all the quantities y(t) z(t), w(t) are positive <strong>and</strong> absolutely continuous on any finite<br />

time interval [0,T]. We have<br />

˙y = 1<br />

2 √ x<br />

k2<br />

˙x ≤ −k1<br />

2 y + 2 y2<br />

˙z = − 1<br />

y2 ˙y ≥ k1 k2<br />

2 z − 2<br />

˙w = − k1<br />

2 e− k1 t − 2 z(t)+e k1 t k2<br />

2 ˙z ≥ − 2 e− k1 t 2<br />

Moreover, w(0) = 1 √ . Then, for almost all t>0,<br />

x(0)<br />

If 1<br />

√x(0) − k2<br />

k1<br />

w(t) ≥<br />

1<br />

� x(0) − k2<br />

k1<br />

+ k2<br />

e<br />

k1<br />

− k1 t 2<br />

> 0, then w(t) > 0 <strong>and</strong> we can go backwards in the previous inequalities:<br />

w(t) ≥ √x(0) 1 − k2<br />

�<br />

1 − e k1<br />

− k1 t 2 �<br />

z(t) ≥ e k �<br />

1 t 2 √ 1 −<br />

x(0) k2<br />

�<br />

k1<br />

+ k1<br />

y(t) ≤ 1<br />

2<br />

.<br />

x(t) ≤<br />

Hence, if x(0) ≤ k2 1<br />

4k2 , or 1 −<br />

2<br />

� x(0) k2<br />

k1<br />

e k �<br />

1<br />

2<br />

t<br />

√x(0)<br />

1<br />

− k �<br />

2 + k1<br />

k1 2<br />

x(0)e−k1t �<br />

1− √ x(0) k �2 2<br />

k1<br />

1 ≥ 2 , then:<br />

x(t) ≤ 4x(0)e −k1t<br />

Lemma 98 ([38])<br />

Consider �b (˜z) − �b (˜x) − �b ∗ (˜z)˜ε that appears in the inequality (3.12) (omitting to write u<br />

in ˜ �<br />

�<br />

b) <strong>and</strong> suppose θ ≥ 1. Then ��b (˜z) − �b (˜x) − �b ∗ �<br />

�<br />

(˜z)˜ε � ≤ Kθn−1 |˜ε| 2 , for some K>0.<br />

Proof.<br />

Let us denote ε = z − x <strong>and</strong> consider a smooth expression E(z, x) of the form:<br />

E(z, x) =f(z) − f(x) − df (z)ε,<br />

151

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!