28.01.2013 Views

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

Adaptative high-gain extended Kalman filter and applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00559107, version 1 - 24 Jan 2011<br />

3.6 Boundedness of the Riccati Matrix<br />

Proof.<br />

We denote by |.|, the Frobenius norm of matrices: |A| = � T race(A ′ A). Recall that for<br />

two symmetric semi-positive matrices A, B such that 0 ≤ A ≤ B we have11 :0≤ |A| ≤| B|.<br />

Choose τ0 > 0 <strong>and</strong> apply Lemma 38 to obtain �α <strong>and</strong> � β such that �α Id ≤ S (τ) ≤ � β Id for<br />

all τ ≥ τ0. In order to extend the inequality for 0 ≤ τ ≤ τ0, we start from:<br />

� τ dS (v)<br />

S (τ) = S0 +<br />

0 dτ dv<br />

⎡<br />

� �<br />

τ<br />

= S0 + ⎣− A(u)+<br />

0<br />

�b ∗ (z,u) F(θ, I)<br />

−<br />

θ θ 2 N<br />

�′<br />

S<br />

�<br />

−S A(u)+ �b ∗ (z,u) F(θ,I)<br />

−<br />

θ θ 2 �<br />

N + C ′<br />

R−1 �<br />

C − SQS dv.<br />

As θ (0) = 1, then S (0) = S (0) = S0, which together with SQS > 0 (symmetric semipositive)<br />

leads to<br />

⎡<br />

� �<br />

τ<br />

S (τ) ≤ S0 + ⎣− A(u)+<br />

0<br />

�b ∗ (z,u) F(θ, I)<br />

−<br />

θ θ 2 N<br />

�′<br />

S<br />

<strong>and</strong><br />

�<br />

� � τ �<br />

�S (τ) � ≤ |S0| + 2<br />

0<br />

with AM = sup (|A(u(τ))|) <strong>and</strong><br />

[0;τ0]<br />

−S<br />

�<br />

A(u)+ � b ∗ (z,u)<br />

θ<br />

F(θ,I)<br />

−<br />

θ 2 �<br />

N + C ′<br />

R−1 �<br />

C dv,<br />

�<br />

�<br />

AM + B + �<br />

F(θ, I)<br />

�<br />

θ 2<br />

�<br />

�<br />

�<br />

� |N|<br />

�<br />

��S � �<br />

� �<br />

+ �C ′<br />

R −1 �<br />

�<br />

C�<br />

dv<br />

�<br />

�<br />

��b ∗ �<br />

�<br />

(z,u) � ≤ B. Then<br />

�<br />

�S � �<br />

� �<br />

≤ |S0| + �C ′<br />

R −1 � � τ<br />

�<br />

C�<br />

τ0 + 2s � �<br />

�S� dv,<br />

with s = aM |N| + AM + B. Applying Gronwall’s lemma gives us for all 0 ≤ τ ≤ τ0,<br />

�<br />

�S � � �<br />

� �<br />

≤ |S0| + �C ′<br />

R −1 � �<br />

�<br />

C�<br />

τ0 e 2sτ<br />

� �<br />

�<br />

≤ |S0| + �C ′<br />

R −1 � �<br />

�<br />

C�<br />

τ0 e 2sτ0<br />

�<br />

≤ b √ �<br />

�<br />

n + �C ′<br />

R −1 � �<br />

�<br />

C�<br />

τ0 e 2sτ0<br />

= β1.<br />

In the same manner we denote P = S −1 , <strong>and</strong> use the equation<br />

dP<br />

dt<br />

= P<br />

�<br />

A(u)+ � b ∗ (z,u)<br />

θ<br />

−<br />

F(θ, I)<br />

θ 2 N<br />

�′ �<br />

+ A(u)+ �b ∗ (z,u)<br />

−<br />

θ<br />

11 See Appendix B.1 for details of establishing this fact.<br />

48<br />

0<br />

F(θ, I)<br />

θ 2 N<br />

�<br />

P<br />

(3.14)<br />

− PC ′<br />

R −1 CP + Q

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!