13.02.2013 Views

Download the entire proceedings as an Adobe PDF - Eastern Snow ...

Download the entire proceedings as an Adobe PDF - Eastern Snow ...

Download the entire proceedings as an Adobe PDF - Eastern Snow ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Correlation Coe.<br />

Correlation Coe.<br />

Correlation Coe.<br />

GTVN vs. <strong>Snow</strong> Depth SSI vs. <strong>Snow</strong> Depth GTH VS <strong>Snow</strong> Depth<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

Winter 01-02<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

111<br />

Test Site<br />

Test Site<br />

Test Site<br />

Winter 02-03<br />

Winter 03-04<br />

Figure 6. Correlations of snow depth vs. SSM/I signatures GTVN (19v–37v), GTH (19h-37h), <strong>an</strong>d SSI (22v-<br />

85v) for various test sites (TS) for winter se<strong>as</strong>ons 01–02, 02–03, 03–04<br />

The correlation coefficients between snow depth <strong>an</strong>d scattering signatures follow a consistent<br />

pattern for all <strong>the</strong> winter se<strong>as</strong>ons. For all <strong>the</strong> sites GTVN <strong>an</strong>d GTH show <strong>the</strong> same correlation with<br />

snow depth. In o<strong>the</strong>r words, <strong>the</strong> difference between vertically <strong>an</strong>d horizontally polarized signatures<br />

is negligible in terms of correlations with snow depth. Contrary to GTVN <strong>an</strong>d GTH, SSI h<strong>as</strong> a<br />

different pattern. It h<strong>as</strong> <strong>the</strong> domin<strong>an</strong>t correlation for test sites 1 to 5 but for sites located in high<br />

latitudes GTVN becomes <strong>the</strong> domin<strong>an</strong>t. This is because of <strong>the</strong> saturation of <strong>the</strong> 85GHZ ch<strong>an</strong>nel<br />

over a deep snow pack. SSI c<strong>an</strong> be used to identify <strong>an</strong>d to estimate SWE over shallow snow. In<br />

c<strong>as</strong>e of SWE <strong>an</strong>d SSM/I signatures, Figure (7) illustrates <strong>the</strong> correlations between SWE <strong>an</strong>d<br />

different SSM/I spectral signatures. For test sites 1 to 5 SSI h<strong>as</strong> <strong>the</strong> higher correlation but for <strong>the</strong><br />

o<strong>the</strong>r sites GTVN <strong>an</strong>d GTH show better correlations with SWE. Figure 7 also shows that <strong>the</strong><br />

correlations between SWE <strong>an</strong>d scattering signatures are higher th<strong>an</strong> those for snow depth. This<br />

indicates that SSM/I signatures c<strong>an</strong> be a better estimator of SWE th<strong>an</strong> of <strong>the</strong> snow depth.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!