18.11.2013 Aufrufe

Materialforschung mit Positronen: Von der Doppler-Spektroskopie zur

Materialforschung mit Positronen: Von der Doppler-Spektroskopie zur

Materialforschung mit Positronen: Von der Doppler-Spektroskopie zur

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

[269] P. Dadras, Stress-Strain Behavior in Bending, H. Kuhn et al., Mechanical Testing and<br />

Evaluation, ASM Handbook, Vol. 8, ASM International, Materials Park, OH, USA<br />

(2000), pp. 109<br />

[270] M. Haaks, K. Maier, Predicting the Lifetime of steels, in: S. Albeverio, V. Jentsch, H.<br />

Kantz (eds.), Extreme Events in Nature and Society, Springer, Berlin (2006) pp. 211<br />

[271] K. Bennewitz, <strong>Positronen</strong>spektroskopie an zyklisch verformten Titan- und Eisenwerkstoffen,<br />

Dissertation, Universität Bonn (2002)<br />

[272] A.H. Cotrell, Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford<br />

(1956)<br />

[273] G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, Singapore (1988)<br />

[274] G.I. Taylor, The Mechanism of Plastic Deformation of Crystals, Part I.- Theoretical,<br />

Proc. Roy. Soc. A 145 (1934) 362<br />

[275] L.P. Kubin, Dislocation Patterning, in: H. Mughrabi, Material Science and Technology<br />

Vol 6: Plastic Deformation and Fracture of Materials, VCH, Weinheim (1993) pp.137<br />

[276] P.J. Hurley, W.J. Evans, A methodology for predicting fatigue crack propagation rates<br />

in titanium based on damage accumulation, Scripta. Mater. 56 (2007) 681<br />

[277] A. Uğuz, J.W. Martin, Plastic Zone Size Measurement Techniques for Metallic Materials,<br />

Mater. Charact. 37 (1996) 105<br />

[278] Y.L. Chiu, A.H.W. Ngan, A TEM investigation on indentation plastic zones in<br />

Ni 3 Al(Cr,B) single crystal, Acta Mater. 50 (2002) 2677<br />

[279] G.T. Hahn, R.G. Hoagland, A.R. Rosenfield, Local Yielding Attending Fatigue Crack<br />

Growth, Met. Trans. 3 (1972) 1189<br />

[280] DIN 50150/ ICS 77.040.10, Testing of metallic materials - Conversion of hardness values,<br />

Beuth Verlag, Berlin (2000)<br />

[281] R. S<strong>mit</strong>h, G. Sandland, Some Notes on the Use of a Diamond Pyramid for Hardness<br />

Testing, J. Iron Steel Inst. 111 (1925) 285<br />

[282] D.S Dugdale, Experiments with pyramidal indenters, J. Mech. Phys. Solids 3 (1955)<br />

206, 212<br />

[283] C. Bathias, R.M. Pelloux, Fatigue Crack Propagation in Martensitic and Austenitic<br />

Steels, Met. Trans. 4 (1973) 1265<br />

[284] A.H. Purcell, J. Weertman, Crack Tip Area in Fatigued Copper Single Crystals, Metal.<br />

Trans. 5 (1974) 1805<br />

[285] A. Saxena, S.D. Antolovich, Low Cycle Fatigue, Fatigue Crack Propagation and Substructures<br />

in a Series of Polycrystalline Cu-Al Alloys, Met. Trans. A 6 (1975) 1809<br />

[286] M. Nyström, E. Sö<strong>der</strong>lund, B. Karlsson, Plastic zones around fatigue cracks studied by<br />

ultra-low-load indentation technique, Int. J. Fatigue 17 (1995) 141<br />

[287] G. Savary, M. Cans, F.L. Bastian, Characterization of optical, electronic and topographic<br />

images in fatigue research, Imgage Vision Comput. 13 (1995) 609<br />

[288] G.R. Chananai, Determination of plastic-zone sizes at fatigue-cracks by optical interference<br />

technique, Int. J. Fract. 13 (1977) 394<br />

160

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!