27.02.2013 Views

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

varying induct<strong>an</strong>ces excited by four independent <strong>an</strong>gular frequencies (ω1, ω2, ωs1, ωs2)<br />

are expressed as :<br />

m ⋅ P<br />

( mω<br />

+ nω<br />

+ kω<br />

+ zω<br />

)<br />

+∞ +∞ +∞ +∞<br />

1 2 3 4<br />

∑∑∑∑<br />

=<br />

m= 0 n= −∞k=<br />

−∞z=<br />

−∞ mω1<br />

+ nω2<br />

+ kω3<br />

+ zω4<br />

n ⋅ P<br />

( mω<br />

+ nω<br />

+ kω<br />

+ zω<br />

)<br />

+∞ +∞ +∞ +∞<br />

1 2 3 4<br />

∑∑ ∑∑<br />

=<br />

n= 0 m= −∞ k= −∞z=<br />

−∞ mω1<br />

+ nω2<br />

+ kω3<br />

+ zω4<br />

k ⋅ P<br />

( mω<br />

+ nω<br />

+ kω<br />

+ zω<br />

)<br />

+∞ +∞ +∞ +∞<br />

1 2 3 4<br />

∑∑∑∑<br />

=<br />

k= 0 m= −∞ n= −∞z=<br />

−∞ mω1<br />

+ nω2<br />

+ kω3<br />

+ zω4<br />

+∞<br />

+∞<br />

+∞<br />

+∞<br />

∑∑∑∑<br />

z ⋅ P<br />

( mω1<br />

+ nω2<br />

+ kω3<br />

+ zω4<br />

)<br />

= 0<br />

z= 0 m= −∞ n= −∞ k= −∞ mω1<br />

+ nω2<br />

+ kω3<br />

+ zω4<br />

181<br />

0<br />

0<br />

0<br />

(4.13)<br />

The average input power into the machine is assumed to be positive, average power<br />

going out <strong>of</strong> the machine is negative <strong>an</strong>d P( ω ω ) = P(<br />

−ω<br />

−ω<br />

)<br />

( mω<br />

nω<br />

+ kω<br />

zω<br />

)<br />

1<br />

2<br />

3<br />

4<br />

a<br />

+ .<br />

P + + is the average real power flow at <strong>an</strong>gular frequency<br />

( m ω nω<br />

+ kω<br />

+ zω<br />

)<br />

1<br />

+ . In using (4.13), all sources <strong>of</strong> loss (such as copper <strong>an</strong>d core<br />

2<br />

3<br />

4<br />

losses in the electrical circuit <strong>an</strong>d the mech<strong>an</strong>ical <strong>an</strong>d frictional losses in the mech<strong>an</strong>ical<br />

subsystem) are considered to be external to the energy converting electric <strong>machines</strong>.<br />

Hence, (4.13) in the context <strong>of</strong> <strong>dual</strong> <strong>stator</strong> <strong>winding</strong> <strong>induction</strong> <strong>machines</strong>, the average<br />

powers are the input <strong>an</strong>d output powers <strong>of</strong> the time varying induct<strong>an</strong>ces between the<br />

<strong>stator</strong> <strong>an</strong>d rotor <strong>winding</strong>s. The <strong>an</strong>gular frequency <strong>of</strong> the voltages impressed on the ABC<br />

<strong>winding</strong> set is ω 1 <strong>an</strong>d the <strong>an</strong>gular frequency <strong>of</strong> the rotor currents due to this voltage is<br />

ω s1<br />

, the <strong>an</strong>gular frequency <strong>of</strong> the voltage connected to the XYZ <strong>winding</strong> set <strong>an</strong>d the<br />

corresponding <strong>an</strong>gular frequency <strong>of</strong> the rotor currents induced by this impressed voltage<br />

source are 2<br />

ω , s2<br />

ω respectively. The dependent <strong>an</strong>gular frequency is the mech<strong>an</strong>ical<br />

b<br />

a<br />

b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!