27.02.2013 Views

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The first component <strong>of</strong> the above equation is zero unless 1 P k = − <strong>an</strong>d the second<br />

component is also zero except when 1 P k = . Hence, the final result c<strong>an</strong> be written as:<br />

*<br />

( )<br />

( ) ⎛ P1<br />

⋅ ⋅<br />

⎞ j 2ω1t<br />

−2P1<br />

ωrt<br />

−P1<br />

i−1<br />

3C<br />

I C I e<br />

⎧ µ r 2<br />

0<br />

( α ) ⎫ r<br />

⎪ j 2 s1<br />

s1<br />

⎜ R iR1<br />

⎟<br />

⎪<br />

⎪ − gP1<br />

⎝ ⎠<br />

⎪<br />

−πrl<br />

Re ⎨<br />

⎬<br />

(5.84)<br />

⎪ µ r 2<br />

*<br />

0<br />

*<br />

P1<br />

jP1<br />

( i−1)<br />

αr<br />

+ j 2 ( 3C<br />

⋅ )( ⋅ ) ⎪<br />

s1<br />

I s1<br />

CR<br />

IiR1<br />

e<br />

⎪⎩<br />

gP<br />

⎪<br />

1<br />

⎭<br />

Summing the torques due to all the rotor bars, the torque component becomes:<br />

2π<br />

∫<br />

0<br />

J<br />

1<br />

( θ,<br />

t)<br />

⋅ B ( θ , t)<br />

prp<br />

⎧ µ 0r<br />

⎪ j<br />

⎪ − gP1<br />

= −πrl<br />

Re⎨<br />

⎪ µ 0r<br />

+ j<br />

⎪<br />

⎩ gP1<br />

dθ<br />

2<br />

2<br />

⎛<br />

⎜3C<br />

s1⋅<br />

I<br />

⎝<br />

D) The fourth term <strong>of</strong> T e1<br />

s1<br />

⋅C<br />

*<br />

P1<br />

R<br />

2<br />

⎜⎛<br />

*<br />

*<br />

2 3Cs1<br />

⋅ Is1<br />

⋅C<br />

⎝<br />

⎞<br />

⎟e<br />

⎠<br />

P1<br />

R<br />

⎟⎞<br />

⋅<br />

⎠<br />

( 2ω<br />

t −2<br />

P ω t ) − j(<br />

P ( i−1)<br />

α )<br />

j<br />

N<br />

1<br />

r<br />

∑<br />

i=<br />

1<br />

I<br />

214<br />

1<br />

iR1<br />

r<br />

⋅ e<br />

⋅<br />

r<br />

∑<br />

i=<br />

1<br />

( P ( i−1)<br />

α )<br />

j<br />

N<br />

1<br />

I<br />

iR1<br />

r<br />

⋅ e<br />

1<br />

r<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎪<br />

⎭<br />

(5.85)<br />

For the th<br />

i rotor loop, substituting the expressions <strong>of</strong> <strong>winding</strong> surface current<br />

distribution <strong>an</strong>d the flux density into the last term,<br />

2π<br />

∫<br />

0<br />

J<br />

1<br />

( θ,<br />

t)<br />

⋅ B ( θ,<br />

t)<br />

qrqi<br />

⎧<br />

⎪<br />

1 ⎪ k<br />

= − rl Re⎨<br />

2 ⎪<br />

⎪<br />

+<br />

⎩<br />

⎡<br />

⎢<br />

⎣<br />

∑ ∫<br />

⎡<br />

⎢<br />

⎣<br />

∑ ∫<br />

k<br />

2π<br />

0<br />

dθ<br />

µ 0r<br />

j<br />

gk<br />

2π<br />

0<br />

µ 0r<br />

j<br />

gk<br />

2<br />

2<br />

k<br />

j ω1t<br />

+ ω2t<br />

+ ( k −P2<br />

) ωrt<br />

+ k ( i−1)<br />

( 3C<br />

⋅ I )( C ⋅ I ) e<br />

2<br />

2<br />

s1<br />

s1<br />

R<br />

iR2<br />

( α −Pθ<br />

−kθ<br />

)<br />

*<br />

*<br />

k<br />

j(<br />

−ω1t<br />

+ ω2t<br />

+ ( k −P2<br />

) ωrt<br />

+ k ( i−1)<br />

α r + P1θ<br />

−kθ<br />

)<br />

( 3C<br />

s1<br />

⋅ I s1<br />

)( CR<br />

⋅ I iR2<br />

) e<br />

r<br />

1<br />

⎤ ⎫<br />

dθ<br />

⎥ ⎪<br />

⎦ ⎪<br />

⎬<br />

⎤⎪<br />

dθ<br />

⎥⎪<br />

⎦⎭<br />

(5.86)<br />

The first component <strong>of</strong> the above equation is zero except 1 P k = − <strong>an</strong>d the second<br />

component is zero unless 1 P k = . The final result <strong>of</strong> (5.86) c<strong>an</strong> be written as:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!