27.02.2013 Views

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

main idea <strong>of</strong> the Butterworth method is to place the poles evenly on a half circle <strong>of</strong> radius<br />

ω 0 in the left s-pl<strong>an</strong>e, with its center at origin. The four poles are given as:<br />

5π<br />

7π<br />

9π<br />

11π<br />

j<br />

j<br />

j<br />

j<br />

8<br />

8<br />

8<br />

8<br />

1 = ω0<br />

e , p2 = ω0<br />

⋅ e , p3 = ω0<br />

⋅ e , p4 = ω0<br />

⋅ e<br />

p ⋅<br />

The first two poles are used to construct the Butterworth equation in complex form,<br />

which is given as:<br />

2<br />

2<br />

( − p )( p − p ) = p + ω ( 1. 3066 − j1.<br />

3066)<br />

p − j ⋅ω<br />

p (10.81)<br />

1<br />

2<br />

0<br />

The observer characteristic equation is compared with Butterworth equation to find<br />

the observer gains,<br />

rsiL<br />

D<br />

i<br />

ri<br />

= ω<br />

0<br />

rsir<br />

D<br />

ri<br />

i<br />

= − j ⋅ω<br />

rriL<br />

+<br />

D<br />

i<br />

si<br />

L<br />

+<br />

D<br />

ri<br />

( 1.<br />

3066 − j1.<br />

3066)<br />

rri<br />

+<br />

D<br />

L<br />

+ jωei<br />

D<br />

2<br />

0<br />

i<br />

mi<br />

i<br />

i<br />

mi<br />

( K + j ⋅ K ) − j ⋅ ( 2ω<br />

− ω ) − ( K + j ⋅ K )<br />

11<br />

si ri<br />

( K + j ⋅ K ) − j ( ω − ω )<br />

11<br />

12<br />

ei<br />

ri<br />

( K + j ⋅ K ) − j(<br />

ω − ω ) ( K + j ⋅ K ) − ω ( ω − ω )<br />

21<br />

12<br />

22<br />

r L<br />

D<br />

i<br />

ei<br />

ei<br />

ri<br />

L<br />

D<br />

i<br />

ri<br />

376<br />

ri<br />

11<br />

L<br />

D<br />

rriL<br />

− jωei<br />

D<br />

i<br />

i<br />

si<br />

12<br />

0<br />

21<br />

ei<br />

ei<br />

22<br />

ri<br />

(10.82)<br />

(10.83)<br />

Both the imaginary <strong>an</strong>d real parts <strong>of</strong> (10.82-10.83) need to be equal, which are<br />

expressed as:<br />

rsi<br />

L<br />

D<br />

L<br />

D<br />

r<br />

ri<br />

i<br />

r<br />

i<br />

ri<br />

rri<br />

Lsi<br />

Lri<br />

L<br />

+ +<br />

K<br />

D D D<br />

i<br />

i<br />

mi ( K11<br />

) − ( 21 ) = 1. 3066 ⋅ω<br />

0<br />

L<br />

mi<br />

( K12<br />

) − ( 2ω − ω ) − ( K 22 ) = −1.<br />

3066 ⋅ω<br />

0<br />

r<br />

ei<br />

ri<br />

D<br />

i<br />

i<br />

mi<br />

ri<br />

( K ) − ( K ) + ( ω − ω ) ( K ) − ω ( ω − ω ) = 0<br />

si ri ri<br />

+ 11 ei<br />

22 ei ri<br />

12 ei ei ri<br />

Di<br />

Di<br />

Di<br />

Di<br />

(10.84)<br />

(10.85)<br />

L<br />

L<br />

ω (10.86)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!