27.02.2013 Views

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Re<br />

j(<br />

ω ) ⎧<br />

1t−<br />

P1θ<br />

µ 0r<br />

j(<br />

ω2t−<br />

P2θ<br />

)<br />

{ 2(<br />

3C<br />

⋅ I ) e } ⋅Re<br />

j [ 2(<br />

3C<br />

⋅ I ) e ]<br />

1 µ 0r<br />

= −<br />

2 gP<br />

2<br />

s1<br />

2<br />

s1<br />

2<br />

3C<br />

s1<br />

⋅ I<br />

s1<br />

3C<br />

s2<br />

⎨<br />

⎩<br />

⋅ I<br />

s2<br />

gP<br />

Equation (5.76) c<strong>an</strong> be written as:<br />

2π<br />

⎧ µ 2<br />

0r<br />

⎪∫<br />

j 2<br />

1 ⎪ gP 0 2<br />

Re⎨<br />

2π<br />

2 ⎪ µ 0r<br />

⎪<br />

+ ∫ j 2<br />

⎩ gP 0 2<br />

2<br />

⎡sin<br />

⎢<br />

⎣+<br />

sin<br />

s2<br />

( )<br />

( ) ⎥ ω1t<br />

+ ω2t<br />

− P1θ<br />

− P2θ<br />

+ θ1<br />

+ θ 2 ⎤<br />

ω2t<br />

−ω1t<br />

− P2θ<br />

+ P1θ<br />

+ θ 2 −θ1<br />

⎦<br />

213<br />

s2<br />

j(<br />

ω1t<br />

+ ω2t−<br />

P1θ<br />

−P2θ<br />

)<br />

( 3C<br />

⋅ I )( 3C<br />

⋅ I ) e<br />

2<br />

s1<br />

s1<br />

s2<br />

s2<br />

*<br />

*<br />

j(<br />

ω2t−ω1t<br />

+ P1θ<br />

−P2θ<br />

)<br />

( 3Cs1<br />

⋅ I s1<br />

)( 3Cs<br />

2 ⋅ I s2<br />

) e<br />

⎫<br />

⎬<br />

⎭<br />

⎫<br />

dθ<br />

⎪<br />

⎪<br />

⎬<br />

dθ<br />

⎪<br />

⎪<br />

⎭<br />

(5.80)<br />

(5.81)<br />

The above equation will be zero unless the pole numbers <strong>of</strong> two <strong>stator</strong> <strong>winding</strong> meet<br />

<strong>an</strong>y <strong>of</strong> the following conditions.<br />

1 2 P P = or P1 = −P2<br />

Since dissimilar pole numbers are chosen in this special machine,<br />

2π<br />

∫<br />

0<br />

1<br />

( θ t)<br />

⋅ B ( θ,<br />

t)<br />

dθ<br />

= 0<br />

J (5.82)<br />

, 2<br />

C) The third term <strong>of</strong> T e1<br />

For the th<br />

i rotor loop, substituting the expressions <strong>of</strong> the surface current distribution<br />

<strong>an</strong>d the flux density due to the ABC <strong>winding</strong> set into the third term,<br />

2π<br />

∫<br />

0<br />

J<br />

1<br />

( θ,<br />

t)<br />

⋅ B ( θ,<br />

t)<br />

prpi<br />

⎧<br />

⎪<br />

1 ⎪ k<br />

= − rl Re⎨<br />

2 ⎪<br />

⎪<br />

+<br />

⎩<br />

⎡<br />

⎢<br />

⎣<br />

∑ ∫<br />

⎡<br />

⎢<br />

⎣<br />

∑ ∫<br />

k<br />

2π<br />

0<br />

dθ<br />

µ 0r<br />

j<br />

gk<br />

2π<br />

0<br />

µ 0r<br />

j<br />

gk<br />

2<br />

2<br />

k<br />

j 2ω1t<br />

+ ( k −P1<br />

) ωrt<br />

+ k ( i−1)<br />

( 3C<br />

⋅ I )( C ⋅ I ) e<br />

2<br />

2<br />

s1<br />

s1<br />

R<br />

iR1<br />

( α −Pθ<br />

−kθ<br />

)<br />

*<br />

*<br />

k j(<br />

( k −P1<br />

) ωrt<br />

+ k ( i−1)<br />

α r + P1θ<br />

−kθ<br />

)<br />

( 3C<br />

s1<br />

⋅ I s1<br />

)( CR<br />

⋅ I R1<br />

) e<br />

r<br />

1<br />

⎤⎫<br />

dθ<br />

⎥⎪<br />

(5.83)<br />

⎦⎪<br />

⎬<br />

⎤⎪<br />

dθ<br />

⎥⎪<br />

⎦⎭

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!