27.02.2013 Views

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Substituting (5.31) <strong>an</strong>d (5.43) into the above equation yields,<br />

J<br />

r 2i<br />

⎧<br />

'<br />

'<br />

k j s2ω2t<br />

−k<br />

θ −(<br />

i−1)<br />

( θ t)<br />

Re 2 ⋅ I ⋅C<br />

⋅ e<br />

( [ α ] ) ⎫ r<br />

, = ⎨∑<br />

iR2<br />

R<br />

⎬<br />

(5.59)<br />

⎩ k<br />

⎭<br />

Tr<strong>an</strong>sform the above equation into the stationary reference frame,<br />

J<br />

r 2i<br />

⎧<br />

( ω ) ⎫ rt<br />

, = ⎨∑<br />

iR2<br />

R<br />

⎬<br />

(5.60)<br />

⎩ k<br />

⎭<br />

k j ω2t<br />

−kθ<br />

+ k ( i−1)<br />

α r + ( k −P2<br />

)<br />

( θ t)<br />

Re 2 ⋅ I ⋅C<br />

⋅ e<br />

The corresponding flux densities in the air gap induced by these currents are<br />

expressed as:<br />

B<br />

qrqi<br />

⎧ jµ<br />

r<br />

( ω ) ⎫ rt<br />

, = ⎨∑<br />

iR2<br />

R<br />

⎬<br />

(5.61)<br />

⎩ k k g<br />

⎭<br />

0<br />

k j ω21t−kθ<br />

+ k ( i−1)<br />

α r + ( k −P2<br />

)<br />

( θ t)<br />

Re 2 ⋅ I ⋅C<br />

⋅ e<br />

The electric field induced at the <strong>stator</strong> surface is:<br />

E<br />

qrqi<br />

2<br />

⎧ jµ<br />

ω r<br />

( ω ) ⎫<br />

rt<br />

, = ⎨∑<br />

iR2<br />

R<br />

⎬ (5.62)<br />

⎩ k k g<br />

⎭<br />

0 2<br />

k j ω2t<br />

−kθ<br />

+ k ( i−1)<br />

α r + ( k −P2<br />

)<br />

( θ t)<br />

Re − 2 ⋅ I ⋅ C ⋅ e<br />

Then the EMF induced in the phase X <strong>of</strong> the XYZ <strong>winding</strong> set is obtained by<br />

multiplying the electric field with the <strong>winding</strong> distribution <strong>of</strong> the phase X as:<br />

2π<br />

() t = rl C ( θ ) ⋅ E ( θ t)<br />

∫<br />

u qrqi<br />

qrqi X , dθ<br />

(5.63)<br />

0<br />

Substituting (5.18) <strong>an</strong>d (5.62) into (5.63) <strong>an</strong>d integrating,<br />

u<br />

qrqi<br />

() t<br />

⎧<br />

⎪<br />

⎪ k<br />

= rl Re ⎨<br />

⎪<br />

⎪<br />

+<br />

⎩<br />

2π<br />

∑ ∫<br />

∑ ∫<br />

k<br />

0<br />

C<br />

e<br />

− jP2θ<br />

s2<br />

2π<br />

*<br />

jP2θ<br />

Cs2<br />

e<br />

0<br />

µ 0ω2r<br />

⋅<br />

jk g<br />

µ 0ω2r<br />

⋅<br />

jk g<br />

The first term in (5.64) is zero unless,<br />

k =<br />

−P2<br />

2<br />

2<br />

2 ⋅ I<br />

R2<br />

2 ⋅ I<br />

208<br />

⋅C<br />

R2<br />

k<br />

R<br />

⋅C<br />

⋅ e<br />

k<br />

R<br />

( ω t −kθ<br />

+ k ( i−1)<br />

α + ( k −P<br />

) ω t )<br />

j<br />

⋅ e<br />

( ω t −kθ<br />

+ k ( i−1)<br />

α + ( k −P<br />

) ω t )<br />

j<br />

2<br />

2<br />

r<br />

r<br />

2<br />

2<br />

r<br />

⎫<br />

dθ<br />

⎪<br />

⎪<br />

⎬<br />

dθ<br />

⎪<br />

⎪<br />

⎭<br />

r<br />

(5.64)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!