27.02.2013 Views

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

i = i + ji<br />

(7.6)<br />

qdr<br />

qr<br />

dr<br />

where, j is the complex operator; V qs <strong>an</strong>d V ds are the q- <strong>an</strong>d d-axis <strong>stator</strong> voltages<br />

respectively; V qr <strong>an</strong>d V dr are the q- <strong>an</strong>d d-axis rotor voltages respectively; λ qs <strong>an</strong>d λ ds<br />

are the q- <strong>an</strong>d d-axis <strong>stator</strong> flux linkages respectively; λ qr <strong>an</strong>d λ dr are the q- <strong>an</strong>d d-axis<br />

rotor flux linkages respectively; i qs <strong>an</strong>d i ds are the q- <strong>an</strong>d d-axis <strong>stator</strong> currents<br />

respectively; i qr <strong>an</strong>d i dr are the q- <strong>an</strong>d d-axis rotor currents respectively.<br />

The steady state voltage equations <strong>of</strong> the <strong>dual</strong> <strong>stator</strong> <strong>winding</strong> <strong>induction</strong> machine c<strong>an</strong><br />

then be expressed in the complex variable form as:<br />

V = r ⋅i<br />

− jω<br />

λ<br />

(7.7)<br />

qdsi<br />

si<br />

qdsi<br />

ei<br />

qdsi<br />

V r ⋅i<br />

− jω<br />

λ = 0<br />

(7.8)<br />

qdri = ri qdri si qdri<br />

where, i = 1,<br />

2 represent the variables <strong>of</strong> the ABC <strong>an</strong>d XYZ <strong>winding</strong> sets respectively; r si<br />

is the <strong>stator</strong> resist<strong>an</strong>ce; r ri is the rotor resist<strong>an</strong>ce; ω ei is the electric speed, ω si is the slip,<br />

ω rm is rotor mech<strong>an</strong>ical speed <strong>an</strong>d the slip <strong>of</strong> two <strong>winding</strong>s c<strong>an</strong> be expressed as<br />

P1 P2 ωs1<br />

= ωe1<br />

− ωrm<br />

, ωs<br />

2 = ωe2<br />

− ωrm<br />

.<br />

2<br />

2<br />

If the flux linkage equations in terms <strong>of</strong> currents are expressed in matrix form as:<br />

⎡λ<br />

⎢<br />

⎣λ<br />

qdsi<br />

qdri<br />

⎤ ⎡ L<br />

⎥ = ⎢<br />

⎦ ⎣L<br />

si<br />

mi<br />

L<br />

L<br />

mi<br />

ri<br />

⎤ ⎡i<br />

⎥ × ⎢<br />

⎦ ⎣i<br />

qdsi<br />

qdri<br />

⎤<br />

⎥<br />

⎦<br />

258<br />

(7.9)<br />

Then by calculating the inverse <strong>of</strong> the matrix, the <strong>stator</strong> <strong>an</strong>d rotor currents c<strong>an</strong> be<br />

expressed in terms <strong>of</strong> the flux linkages as:<br />

L L<br />

= (7.10)<br />

ri<br />

mi<br />

iqdsi λqdsi − λqdri<br />

Di<br />

Di

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!