27.02.2013 Views

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

an investigation of dual stator winding induction machines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The expressions <strong>of</strong> t1 i <strong>an</strong>d t2 i are given in (10.75-10.80). Equation (10.119) c<strong>an</strong> also<br />

be function expressed as:<br />

H<br />

i<br />

= −<br />

( ω − ˆ ω )<br />

L<br />

( ω t + pt ) + j(<br />

pt − ω t )<br />

2<br />

ˆ<br />

mi ei 1i<br />

2i<br />

1i<br />

ei 2i<br />

λ qdri ⋅ rm rm ⋅ ⋅<br />

. (10.127)<br />

2 2<br />

Di<br />

t1i<br />

+ t2i<br />

Then the imaginary <strong>an</strong>d real parts <strong>of</strong> (10.127) are given as:<br />

Im<br />

Re<br />

L<br />

D<br />

2<br />

( ) ˆ<br />

mi 1i<br />

H<br />

( ˆ<br />

i = − λqdri<br />

⋅ ωrm<br />

− ωrm<br />

) ⋅ ⋅ 2 2<br />

i<br />

L<br />

D<br />

pt − ω t<br />

t + t<br />

2<br />

( ) ˆ<br />

mi ei 1i<br />

H<br />

( ˆ<br />

i = − λqdri<br />

⋅ ωrm<br />

− ωrm<br />

) ⋅ ⋅ 2 2<br />

i<br />

1i<br />

1i<br />

2i<br />

395<br />

ei 2i<br />

ω t + pt<br />

t + t<br />

To simplify the <strong>an</strong>alysis, the following definitions are made:<br />

f<br />

1i<br />

f<br />

2i<br />

L<br />

pt<br />

−ω<br />

t<br />

2<br />

( ) ˆ mi 1i<br />

p = qdri ⋅ ⋅ 2 2<br />

2i<br />

2i<br />

(10.128)<br />

(10.129)<br />

ei 2i<br />

λ (10.130)<br />

Di<br />

t1i<br />

+ t2i<br />

L<br />

pt<br />

+ ω t<br />

2<br />

( ) ˆ mi 2i<br />

p = qdri ⋅ ⋅ 2 2<br />

ei 1i<br />

λ (10.131)<br />

Di<br />

t1i<br />

+ t2i<br />

Then (10.125) c<strong>an</strong> be rewritten as:<br />

ˆ ω<br />

rm<br />

= G ⋅ P ⋅ k<br />

1<br />

+ G ⋅ P ⋅<br />

2<br />

{ f ( p)<br />

k f ( p)<br />

} ( ω ˆ<br />

11 + 1 ⋅ 21 ⋅ rm − ωrm<br />

)<br />

( 1−<br />

k ) { f ( p)<br />

+ k ⋅ f ( p)<br />

} ⋅ ( ω − ˆ ω )<br />

12<br />

2<br />

22<br />

rm<br />

rm<br />

(10.132)<br />

The first idea <strong>of</strong> speed estimation is <strong>an</strong> adjustable combination <strong>of</strong> the error signals<br />

from both <strong>stator</strong> <strong>winding</strong> sets. The computed error function is expressed as:<br />

ε = k<br />

+<br />

*<br />

*<br />

{ k1<br />

Im[<br />

ˆ λ ( ˆ ) ] ( ) [ ˆ ( ˆ<br />

qdr1<br />

iqds1<br />

− iqds1<br />

+ 1−<br />

k1<br />

Re λqdr1<br />

iqds1<br />

− iqds1)<br />

] }<br />

*<br />

*<br />

( 1−<br />

k)<br />

{ k Im ˆ λ ( i − iˆ<br />

) + 1−<br />

k Re ˆ λ i − iˆ<br />

}<br />

2<br />

[ ] ( ) [ ( ) ]<br />

qdr 2<br />

qds2<br />

qds2<br />

2<br />

qdr 2<br />

qds2<br />

qds2<br />

(10.133)<br />

where, k is used to partition the error signals from two <strong>stator</strong> <strong>winding</strong>s <strong>an</strong>d 0 ≤ k ≤1<br />

; 1 k<br />

is used to partition the active power <strong>an</strong>d reactive power <strong>of</strong> ABC <strong>winding</strong> set <strong>an</strong>d

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!