13.10.2012 Views

boylistad

boylistad

boylistad

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S<br />

S P P<br />

E<br />

72 V 72 V<br />

I5 ��� ��� ���3 mA<br />

R(1,2,3)�4 � R5 12 k��12 k� 24 k�<br />

with<br />

R7�(8,9)E (4.5 k�)(72 V) 324 V<br />

V7 ��� ��� ���19.6 V<br />

R7�(8,9) � R6 4.5 k��12 k� 16.5<br />

V7 19.6 V<br />

I6 �����4.35 mA<br />

R7�(8,9) 4.5 k�<br />

and Is � I5 � I6 � 3 mA � 4.35 mA � 7.35 mA<br />

Since the potential difference between points a and b of Fig. 7.22 is<br />

fixed at E volts, the circuit to the right or left is unaffected if the network<br />

is reconstructed as shown in Fig. 7.24.<br />

R 2<br />

8 k�<br />

R 1<br />

4 k�<br />

R 3<br />

12 k�<br />

R 4<br />

24 k�<br />

R 5<br />

12 k�<br />

E<br />

I 5<br />

I 5<br />

72 V<br />

E<br />

I 6<br />

R 6<br />

12 k�<br />

FIG. 7.24<br />

An alternative approach to Example 7.9.<br />

We can find each quantity required, except I s, by analyzing each circuit<br />

independently. To find I s, we must find the source current for each<br />

circuit and add it as in the above solution; that is, I s � I 5 � I 6.<br />

EXAMPLE 7.10 This example demonstrates the power of Kirchhoff’s<br />

voltage law by determining the voltages V1, V2, and V3 for the network<br />

of Fig. 7.25. For path 1 of Fig. 7.26,<br />

E1 � V1 � E3 � 0<br />

and V1 � E1 � E3 � 20 V � 8 V � 12 V<br />

For path 2,<br />

E2 � V1 � V2 � 0<br />

and V2 � E2 � V1 � 5 V � 12 V � �7 V<br />

indicating that V2 has a magnitude of 7 V but a polarity opposite to that<br />

appearing in Fig. 7.25. For path 3,<br />

V3 � V2 � E3 � 0<br />

and V3 � E3 � V2 � 8 V � (�7 V) � 8 V � 7 V � 15 V<br />

Note that the polarity of V2 was maintained as originally assumed,<br />

requiring that �7 V be substituted for V2. 7.3 LADDER NETWORKS<br />

A three-section ladder network appears in Fig. 7.27. The reason for<br />

the terminology is quite obvious for the repetitive structure. Basically<br />

two approaches are used to solve networks of this type.<br />

9 k� +<br />

72 V<br />

R V<br />

7<br />

7 3 k�<br />

–<br />

I6 R9 +<br />

E 1<br />

–<br />

+<br />

E 1<br />

–<br />

LADDER NETWORKS ⏐⏐⏐ 223<br />

6 k�<br />

20 V<br />

20 V<br />

R 8<br />

E 2 +<br />

–<br />

+<br />

V3 5 V<br />

V2 –<br />

R1 +<br />

R2 R3 E3 +<br />

–<br />

FIG. 7.25<br />

Example 7.10.<br />

1<br />

E 2 +<br />

–<br />

+<br />

V3 –<br />

+<br />

+<br />

V 1<br />

5 V V2 –<br />

R1 +<br />

R3 R2 E3 +<br />

–<br />

2<br />

3<br />

–<br />

V 1<br />

–<br />

8 V<br />

–<br />

8 V<br />

FIG. 7.26<br />

Defining the paths for Kirchhoff’s voltage law.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!