13.10.2012 Views

boylistad

boylistad

boylistad

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

820 ⏐⏐⏐ NETWORK THEOREMS (ac)<br />

1<br />

Z Th<br />

2<br />

Z� 1<br />

Z� 1 Z�1<br />

FIG. 18.85<br />

Substituting the Y equivalent for the upper D configuration of Fig. 18.84.<br />

+<br />

E Th<br />

–<br />

Z� 1<br />

I 1 = 0<br />

Z� 1<br />

Z 2<br />

Z� 1<br />

FIG. 18.87<br />

Finding the Thévenin voltage for the network<br />

of Fig. 18.83.<br />

+<br />

–<br />

E<br />

Z 2<br />

1<br />

Z Th<br />

The redrawn circuit (Fig. 18.86) shows<br />

Z′ 1(Z′ 1 � Z 2)<br />

ZTh � Z′ 1 ���<br />

Z′1 � (Z′ 1 � Z 2)<br />

3 � �90°( j 3 �� 8 �)<br />

� j 3 �����<br />

j 6 �� 8 �<br />

(3 �90°)(8.54 �20.56°)<br />

� j 3 ����<br />

10 �36.87°<br />

25.62 �110.56°<br />

� j 3 ��� �j 3 � 2.56 �73.69°<br />

10 �36.87°<br />

� j 3 � 0.72 � j 2.46<br />

ZTh � 0.72 ��j 5.46 �<br />

and ZL � 0.72 ��j 5.46 �<br />

Z 1<br />

FIG. 18.84<br />

Defining the subscripted impedances for the network of Fig. 18.83.<br />

3<br />

Th<br />

For E Th, use the modified circuit of Fig. 18.87 with the voltage<br />

source replaced in its original position. Since I 1 � 0, E Th is the voltage<br />

across the series impedance of Z′ 1 and Z 2. Using the voltage divider<br />

rule gives us<br />

Z Th<br />

(Z′ 1 � Z2)E ( j 3 ��8 �)(10 V �0°)<br />

ETh ��� ����<br />

Z′1 � Z2 � Z′ 1 8 ��j 6 �<br />

(8.54 �20.56°)(10 V �0°)<br />

����<br />

10 �36.87°<br />

ETh � 8.54 V ��16.31°<br />

2<br />

Z 1<br />

Z 1<br />

Z 2<br />

Z� 1<br />

3<br />

Z� 1<br />

Z 2<br />

Z� 1<br />

FIG. 18.86<br />

Determining Z Th for the network of Fig. 18.83.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!