13.10.2012 Views

boylistad

boylistad

boylistad

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10.11 THÉVENIN EQUIVALENT: t � R ThC<br />

Occasions will arise in which the network does not have the simple<br />

series form of Fig. 10.24. It will then be necessary first to find the<br />

Thévenin equivalent circuit for the network external to the capacitive<br />

element. E Th will then be the source voltage E of Eqs. (10.15) through<br />

(10.20), and R Th will be the resistance R. The time constant is then t �<br />

R ThC.<br />

EXAMPLE 10.10 For the network of Fig. 10.52:<br />

+<br />

E 21 V<br />

–<br />

60 k�<br />

R1 30 k�<br />

R 2<br />

10 k�<br />

R 1<br />

3<br />

C = 0.2 mF<br />

iC 2<br />

+<br />

vC R4 10 k�<br />

FIG. 10.52<br />

Example 10.10.<br />

a. Find the mathematical expression for the transient behavior of the<br />

voltage vC and the current iC following the closing of the switch<br />

(position 1 at t � 0 s).<br />

b. Find the mathematical expression for the voltage vC and current iC as a function of time if the switch is thrown into position 2 at t �<br />

9 ms.<br />

c. Draw the resultant waveforms of parts (a) and (b) on the same time<br />

axis.<br />

Solutions:<br />

a. Applying Thévenin’s theorem to the 0.2-mF capacitor, we obtain<br />

Fig. 10.53:<br />

RTh � R1 � R2 � R3 � �10 k�<br />

� 20 k��10 k�<br />

RTh � 30 k�<br />

ETh � � � (21 V) � 7 V<br />

The resultant Thévenin equivalent circuit with the capacitor<br />

replaced is shown in Fig. 10.54. Using Eq. (10.23) with Vf � ETh and Vi � 0 V, we find that<br />

vC � Vf � (Vi � Vf)e �t/t<br />

(60 k�)(30 k�)<br />

��<br />

90 k�<br />

R2E (30 k�)(21 V) 1<br />

� �� �<br />

R2 � R1 30 k��60 k� 3<br />

becomes v C � E Th � (0 V � E Th)e �t/t<br />

or vC � ETh(1 � e �t/t )<br />

with t � RC � (30 k�)(0.2 mF) � 6 ms<br />

so that vC � 7(1 � e �t/6ms )<br />

For the current: iC � � ETh<br />

�t/RC<br />

�e<br />

R<br />

� e �t/6ms 7 V<br />

�<br />

30 k�<br />

i C � (0.233 � 10 �3 )e �t/6ms<br />

–<br />

THÉVENIN EQUIVALENT: t � R ThC ⏐⏐⏐ 405<br />

R Th :<br />

E Th :<br />

+<br />

E –<br />

60 k�<br />

R 1<br />

60 k�<br />

R1 21 V<br />

R 2<br />

30 k�<br />

10 k�<br />

10 k�<br />

FIG. 10.53<br />

Applying Thévenin’s theorem to the network of<br />

Fig. 10.52.<br />

R Th = 30 k�<br />

E Th = 7 V C = 0.2 mF<br />

i C<br />

+<br />

v C<br />

FIG. 10.54<br />

Substituting the Thévenin equivalent for the<br />

network of Fig. 10.52.<br />

R 3<br />

R 3<br />

R Th<br />

R 2 30 k� E Th<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!