13.10.2012 Views

boylistad

boylistad

boylistad

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

800 ⏐⏐⏐ NETWORK THEOREMS (ac)<br />

+<br />

E<br />

–<br />

Z 1<br />

Z 2 ETh<br />

FIG. 18.26<br />

Determining the open-circuit Thévenin<br />

voltage for the network of Fig. 18.23.<br />

+<br />

ETh = 3.33 V ∠ – 180°<br />

–<br />

+<br />

–<br />

Z Th = 2.67 � ∠ –90°<br />

Z Th<br />

�j 16 �<br />

ZTh � � � ��<br />

6 �90°<br />

� 2.67 � ��90°<br />

Step 4 (Fig. 18.26):<br />

Z2E ETh � � (voltage divider rule)<br />

Z1 � Z2 2 Z1Z2 ( j 8 �)(�j 2 �) 16 �<br />

� �� �<br />

Z1 � Z2 j 8 ��j 2 � j 6<br />

(�j 2 �)(10 V) �j 20 V<br />

��� ���3.33 V ��180°<br />

j 8 ��j 2 � j 6<br />

Step 5: The Thévenin equivalent circuit is shown in Fig. 18.27.<br />

R<br />

FIG. 18.27<br />

The Thévenin equivalent circuit for the network of Fig. 18.23.<br />

+<br />

X C = 2.67 �<br />

Th<br />

ETh = 3.33 V ∠ – 180° R<br />

–<br />

EXAMPLE 18.8 Find the Thévenin equivalent circuit for the network<br />

external to branch a-a′ in Fig. 18.28.<br />

E 1<br />

+<br />

–<br />

R 1<br />

6 �<br />

10 V ∠ 0°<br />

X L1<br />

8 �<br />

X C<br />

R 2<br />

3 �<br />

X L2 = 5 �<br />

4 �<br />

FIG. 18.28<br />

Example 18.8.<br />

a<br />

R 3<br />

7 �<br />

+<br />

E 2<br />

–<br />

a� Thévenin<br />

30 V ∠ 15°<br />

Solution:<br />

Steps 1 and 2 (Fig. 18.29): Note the reduced complexity with subscripted<br />

impedances:<br />

+<br />

E 1<br />

–<br />

10 V ∠ 0°<br />

Z 1<br />

Z 2<br />

Z 3<br />

a<br />

a� Thévenin<br />

FIG. 18.29<br />

Assigning the subscripted impedances to the network of Fig. 18.28.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!