13.10.2012 Views

boylistad

boylistad

boylistad

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

996 ⏐⏐⏐ POLYPHASE SYSTEMS<br />

A<br />

N<br />

C B<br />

For the total load:<br />

PT � PTD � PTY � 7200 W � 6414.41 W � 13,614.41 W<br />

QT � QTD � QTY � 9600 VAR (C) � 4810.81 VAR (I)<br />

� 4789.19 VAR (C)<br />

ST � �P� 2 T��� Q� 2 T� � �(1�3�,6�1�4�.4�1� W�) 2 � �� (�4�7�8�9�.1�9� V�A�R�) 2 �<br />

� 14,432.2 VA<br />

PT 13,614.41 W<br />

Fp ����� �0.943 leading<br />

ST 14,432.20 VA<br />

EXAMPLE 22.7 Each transmission line of the three-wire, three-phase<br />

system of Fig. 22.26 has an impedance of 15 � �j 20 �. The system<br />

delivers a total power of 160 kW at 12,000 V to a balanced three-phase<br />

load with a lagging power factor of 0.86.<br />

E AB<br />

a. Determine the magnitude of the line voltage EAB of the generator.<br />

b. Find the power factor of the total load applied to the generator.<br />

c. What is the efficiency of the system?<br />

Solutions:<br />

VL 12,000 V<br />

a. Vf (load) ����� 6936.42 V<br />

�3� 1.73<br />

P T (load) � 3V fI f cos v<br />

and<br />

15 � 20 �<br />

15 � 20 �<br />

15 � 20 �<br />

FIG. 22.26<br />

Example 22.7.<br />

P T<br />

12 k V<br />

Z 1 = Z 2 = Z 3<br />

160,000 W<br />

If ��� ����<br />

3Vf cos v 3(6936.42 V)(0.86)<br />

� 8.94 A<br />

c<br />

Since v � cos �1 0.86 � 30.68°, assigning V f an angle of 0° or<br />

V f � V f �0°, a lagging power factor results in<br />

I f � 8.94 A ��30.68°<br />

For each phase, the system will appear as shown in Fig. 22.27,<br />

where<br />

Z 2<br />

Z 1<br />

E AN � I fZ line � V f � 0<br />

a<br />

n<br />

Z 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!