13.10.2012 Views

boylistad

boylistad

boylistad

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

N A<br />

I 3<br />

V 1<br />

I 1<br />

R 3<br />

10 �<br />

6 A R1 4 � R2 2 � 4 A<br />

I 2<br />

V 2<br />

I 3<br />

Supernode<br />

FIG. 8.52<br />

Defining the supernode for the network of Fig. 8.51.<br />

network as shown in Fig. 8.52. The result is a single supernode for which<br />

Kirchhoff’s current law must be applied. Be sure to leave the other defined<br />

nodes in place and use them to define the currents from that region of the<br />

network. In particular, note that the current I3 will leave the supernode at<br />

V1 and then enter the same supernode at V2.Itmust therefore appear twice<br />

when applying Kirchhoff’s current law, as shown below:<br />

Σ Ii � Σ Io 6 A � I 3 � I 1 � I 2 � 4 A � I 3<br />

or I 1 � I 2 � 6 A � 4 A � 2 A<br />

V1 �<br />

R1<br />

Then � �2 A<br />

V 1<br />

V2 �<br />

R2<br />

V 2<br />

and � ���2 A<br />

4 � 2 �<br />

Relating the defined nodal voltages to the independent voltage source,<br />

we have<br />

V1 � V2 � E � 12 V<br />

which results in two equations and two unknowns:<br />

0.25V1 � 0.5V2 � 2<br />

V1 � 1V2 � 12<br />

Substituting:<br />

V1 � V2 � 12<br />

0.25(V2 � 12) � 0.5V2 � 2<br />

and 0.75V2 � 2 � 3 ��1<br />

�1<br />

so that V2 ����1.333 V<br />

0.75<br />

and V1 � V2 � 12 V ��1.333 V � 12 V � �10.667 V<br />

The current of the network can then be determined as follows:<br />

V 10.667 V<br />

I1 �����2.667 A<br />

R1 4 �<br />

V2 1.333 V<br />

I2 �����0.667 A<br />

R2 2 �<br />

V1 � V2 10.667 V � (�1.333 V) 12 V<br />

I3 ������ ���1.2 A<br />

10 �<br />

10 �<br />

10 �<br />

NODAL ANALYSIS (GENERAL APPROACH) ⏐⏐⏐ 285

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!