13.10.2012 Views

boylistad

boylistad

boylistad

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Th<br />

6 �<br />

R 1<br />

R 2<br />

12 �<br />

b<br />

R3 a<br />

R4 3 � 4 �<br />

RTh (a)<br />

c<br />

c′<br />

6 �<br />

FIG. 9.46<br />

Solving for R Th for the network of Fig. 9.45.<br />

R 3<br />

R 1<br />

b a<br />

RTh 3 � 4 �<br />

(b)<br />

R 4<br />

R 2<br />

c,c′<br />

12 �<br />

Step 4: The circuit is redrawn in Fig. 9.47. The absence of a direct connection<br />

between a and b results in a network with three parallel<br />

branches. The voltages V 1 and V 2 can therefore be determined using the<br />

voltage divider rule:<br />

R1E (6 �)(72 V) 432 V<br />

V1 ����� ���48 V<br />

R1 � R3 6 ��3 � 9<br />

V2 �<br />

R 2E (12 �)(72 V) 864 V<br />

��� ���54 V<br />

12 ��4 � 16<br />

� R2 � R 4<br />

+<br />

E 72 V<br />

–<br />

E<br />

+<br />

V1 R1 –<br />

6 �<br />

+<br />

KVL<br />

ETh R2 –<br />

b a<br />

R 3<br />

3 �<br />

R 4<br />

12 �<br />

Assuming the polarity shown for ETh and applying Kirchhoff’s voltage<br />

law to the top loop in the clockwise direction will result in<br />

� V ��ETh � V1 � V2 � 0<br />

and ETh � V2 � V1 � 54 V � 48 V � 6 V<br />

Step 5 is shown in Fig. 9.48.<br />

FIG. 9.47<br />

Determining E Th for the network of Fig. 9.45.<br />

Thévenin’s theorem is not restricted to a single passive element, as<br />

shown in the preceding examples, but can be applied across sources,<br />

whole branches, portions of networks, or any circuit configuration, as<br />

shown in the following example. It is also possible that one of the methods<br />

previously described, such as mesh analysis or superposition, may<br />

have to be used to find the Thévenin equivalent circuit.<br />

EXAMPLE 9.10 (Two sources) Find the Thévenin circuit for the network<br />

within the shaded area of Fig. 9.49.<br />

4 �<br />

+<br />

V 2<br />

–<br />

THÉVENIN’S THEOREM ⏐⏐⏐ 335<br />

–<br />

ETh = 6 V<br />

+<br />

R 1<br />

E 1<br />

0.8 k�<br />

– 6 V<br />

R Th = 5 �<br />

E 2<br />

R 2<br />

+ 10 V<br />

4 k�<br />

R 4<br />

1.4 k�<br />

R L<br />

FIG. 9.48<br />

Substituting the Thévenin equivalent circuit<br />

for the network external to the resistor R L of<br />

Fig. 9.44.<br />

R 3 6 k� R L<br />

FIG. 9.49<br />

Example 9.10.<br />

a<br />

b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!