11.03.2014 Views

Improved Methodology for the Preparation of Chiral Amines

Improved Methodology for the Preparation of Chiral Amines

Improved Methodology for the Preparation of Chiral Amines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6.3. Conclusion:<br />

I developed <strong>the</strong> use <strong>of</strong> catalytic quantities <strong>of</strong> Lewis acids in reductive amination <strong>for</strong> <strong>the</strong> first<br />

time. The use <strong>of</strong> catalytic quantities <strong>of</strong> Yb(OAc) 3 or Y(OAc) 3 or Ce(OAc) 3 proved to be<br />

efficient in reducing <strong>the</strong> alcohol by product <strong>for</strong>mation and to produce <strong>the</strong> secondary amine in<br />

good yield and normal de. No enhancement <strong>of</strong> <strong>the</strong> de resulted from <strong>the</strong> use <strong>of</strong> catalytic<br />

quantities <strong>of</strong> Lewis acids. O<strong>the</strong>r Lanthanide salts were also successful in suppressing alcohol<br />

<strong>for</strong>mation but with lower efficiency. Brønsted acids were used historically in reductive<br />

amination but without enough reports on <strong>the</strong>ir role in reductive amination. I have conducted<br />

extensive study on <strong>the</strong> use <strong>of</strong> different Brønsted and mineral acids in reductive amination. 20<br />

mol % <strong>of</strong> acetic acid and <strong>for</strong>mic acid proved to be efficient in suppressing alcohol <strong>for</strong>mation<br />

in reductive amination. The use <strong>of</strong> mineral acids resulted in more alcohol <strong>for</strong>mation (20-30<br />

area % GC). Reductive amination <strong>of</strong> sterically congested ketones and also aromatic ketones<br />

are best per<strong>for</strong>med using Ti(O i Pr) 4 not catalytic amount <strong>of</strong> Lewis acids nor Brønsted acids.<br />

6.4. References:<br />

[1] For advances in <strong>the</strong> diastereoselective reduction <strong>of</strong> (R)- or (S)-α-MBA ketimines, see: (a)<br />

Nichols, D. E.; Barfknecht, C. F.; Rusterholz, D. B. J. Med. Chem. 1973, 16, 480. (b) Clifton,<br />

J. E.; Collins, I.; Hallett, P.; Hartley, D.; Lunts, L. H. C.; Wicks, P. D. J. Med. Chem. 1982,<br />

25, 670. (c) Eleveld, M. B.; Hogeveen, H.; Schudde, E. P. J. Org. Chem. 1986, 51, 3635-<br />

3642. (d) Bringmann, G.; Geisler, J.-P. Syn<strong>the</strong>sis 1989, 608. (e) Marx, E.; El Bouz, M.;<br />

Célérier, J. P.; Lhommet, G. Tetrahedron Lett. 1992, 33, 4307. (f) Moss, N.; Gauthier, J.;<br />

Ferland, J.-M. Synlett 1995, 142. (g) Lauktien, G.; Volk, F.-J.; Frahm, A. W. Tetrahedron:<br />

Asymmetry 1997, 8, 3457. (h) Bisel, P.; Breitling, E.; Frahm, A. W. Eur. J. Org. Chem 1998,<br />

729. (i) Gutman, A. L.; Etinger, M.; Nisnevich, G.; Polyak, F. Tetrahedron: Asymmetry 1998,<br />

9, 4369. (j) Cimarelli, C.; Palmieri, G. Tetrahedron: Asymmetry 2000, 11, 2555. (k) Storace,<br />

L.; Anzalone, L.; Confalone, P. N.; Davis, W. P.; Fortunak, J. M.; Giangiordano, M.; Haley,<br />

J. J. Jr.; Kamholz, K.; Li, H.-Y.; Ma, P.; Nugent, W. A.; Parsons, R. L. Jr.; Sheeran, P. J.;<br />

Silverman, C. E.; Waltermire, R. E.; Wood, C. C. Org. Process Res. Dev. 2002, 6, 54.<br />

126

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!