11.02.2013 Views

Composite Materials Research Progress

Composite Materials Research Progress

Composite Materials Research Progress

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

26<br />

Jacquemin Frédéric and Fréour Sylvain<br />

plane tensors of hygroscopic expansion coefficients and moduli. Those tensors are assumed to<br />

be material constants.<br />

with,<br />

I<br />

⎧ I<br />

σ ⎫ ⎡ I<br />

L<br />

11<br />

⎪ ⎪ ⎢<br />

11<br />

I<br />

⎪σ<br />

⎪ ⎢ I<br />

22 L12<br />

⎨ ⎬ = ⎢<br />

I<br />

⎪σ33<br />

⎪ ⎢ I<br />

L12<br />

⎪ I ⎪ ⎢<br />

⎩τ12<br />

⎭ ⎢<br />

⎣0<br />

⎪⎧<br />

τ<br />

⎨<br />

⎪⎩ τ<br />

I<br />

32<br />

I<br />

13<br />

I<br />

L12<br />

I<br />

L22<br />

I<br />

L23<br />

0<br />

⎪⎫<br />

⎡L<br />

⎬ = ⎢<br />

⎪⎭ ⎢⎣<br />

0<br />

I<br />

L ⎤<br />

12 0<br />

⎥<br />

I<br />

L ⎥<br />

23 0<br />

⎥<br />

I<br />

L ⎥<br />

22 0<br />

⎥<br />

I<br />

0 L ⎥<br />

55 ⎦<br />

I<br />

44<br />

0<br />

L<br />

I<br />

55<br />

⎤<br />

⎥<br />

⎥⎦<br />

⎧ε<br />

⎪<br />

⎪ε<br />

⎨<br />

⎪ε<br />

⎪<br />

⎩γ<br />

⎪⎧<br />

γ<br />

⎨<br />

⎪⎩ γ<br />

I<br />

11<br />

I<br />

13<br />

I<br />

22<br />

I<br />

33<br />

I<br />

12<br />

I<br />

32<br />

⎪⎫<br />

⎬<br />

⎪⎭<br />

− β<br />

− β<br />

− β<br />

− β<br />

I<br />

11<br />

I<br />

22<br />

I<br />

12<br />

I<br />

ΔC<br />

⎫<br />

⎪<br />

I<br />

ΔC<br />

⎪<br />

⎬ I<br />

ΔC<br />

⎪<br />

I ⎪<br />

ΔC<br />

⎭<br />

I c<br />

Δ C = . c<br />

I<br />

ρ<br />

I and ρ I are respectively the macroscopic moisture concentration and the<br />

mass density of the dry material.<br />

To solve the hygromechanical problem, it is necessary to express the strains versus the<br />

displacements along with the compatibility and equilibrium equations.<br />

Introducing a characteristic modulus L 0 , we introduce the following dimensionless<br />

variables:<br />

σ<br />

Ι<br />

= σ<br />

Ι I I I I I I I I<br />

/ L0<br />

, L = L /L0<br />

, ( w , u , v ) = ( w , u , v ) / b.<br />

Displacements with respect to longitudinal and circumferencial directions, respectively<br />

u ( x,<br />

r)<br />

I<br />

and v ( x,<br />

r)<br />

I<br />

are then deduced:<br />

⎧ I<br />

u ( x,<br />

r)<br />

= R1x<br />

⎪<br />

I<br />

⎨v<br />

( x,<br />

r)<br />

= R 2xr<br />

⎪<br />

R1,<br />

R 2 are constants.<br />

⎩<br />

It is worth noticing that the displacements ( x,<br />

r)<br />

and ( x,<br />

r)<br />

do not depend on the<br />

moisture concentration field. Finally, to obtain the through-thickness or radial component of<br />

the displacement<br />

concentration (47).<br />

I<br />

w , we shall consider in the following the analytical transient<br />

I<br />

The radial component of the displacement field w satisfies the following equation:<br />

u I<br />

v I<br />

I<br />

22<br />

(48)<br />

(49)<br />

(50)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!