11.02.2013 Views

Composite Materials Research Progress

Composite Materials Research Progress

Composite Materials Research Progress

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

and<br />

γ<br />

2<br />

γ<br />

0<br />

Optimization of Laminated <strong>Composite</strong> Structures… 59<br />

⎡ U1<br />

=<br />

⎢<br />

⎢<br />

⎢⎣<br />

sym<br />

⎡ U3<br />

=<br />

⎢<br />

⎢<br />

⎢⎣<br />

sym<br />

U<br />

U<br />

−U<br />

U<br />

3<br />

3<br />

4<br />

1<br />

0 ⎤<br />

0<br />

⎥<br />

⎥<br />

U5⎥⎦<br />

0 ⎤<br />

0<br />

⎥<br />

⎥<br />

−U<br />

3⎥⎦<br />

1<br />

U1<br />

= ( 3Qxx<br />

+ 3Q<br />

yy + 2Qxy<br />

+ 4Qss<br />

)<br />

8<br />

1<br />

U2<br />

= ( Qxx<br />

− Qyy<br />

)<br />

2<br />

1<br />

U3<br />

= ( Qxx<br />

+ Qyy<br />

− 2Qxy<br />

− 4Qss<br />

)<br />

8<br />

⎡<br />

⎢<br />

0<br />

⎢<br />

γ 3 = ⎢<br />

⎢<br />

⎢sym<br />

⎢⎣<br />

3.1.2. Constitutive Relations for a Laminate<br />

⎡ U2<br />

0 0⎤<br />

γ<br />

⎢<br />

⎥<br />

1 = −U<br />

0<br />

⎢ 2<br />

(3.8)<br />

⎥<br />

⎢⎣<br />

sym 0⎥⎦<br />

0<br />

0<br />

U2<br />

⎤<br />

2 ⎥<br />

U ⎥<br />

2<br />

⎥<br />

2 ⎥<br />

0 ⎥<br />

⎥⎦<br />

⎡ 0<br />

γ<br />

⎢<br />

4 =<br />

⎢<br />

⎢⎣<br />

sym<br />

0<br />

0<br />

U3<br />

⎤<br />

−U<br />

⎥<br />

3⎥<br />

0 ⎥⎦<br />

1<br />

U4<br />

= ( Qxx<br />

+ Qyy<br />

+ 6Qxy<br />

− 4Qss<br />

)<br />

8<br />

1<br />

U5<br />

= ( Qxx<br />

+ Qyy<br />

− 2Qxy<br />

+ 4Qss<br />

)<br />

8<br />

<strong>Composite</strong> structures are thin membranes, plates or shells made of n unidirectional<br />

orthotropic plies stacked on the top of each other. Such structures can support in and out-of<br />

plane loadings. In the following the constitutive relations for a laminate made of several<br />

individual plies are derived. The notations are defined in Figure 3.3. In the case of plane<br />

stress, i.e. the effects of transverse shear is neglected, in-plane normal and shear loads N, as<br />

well as the flexural and torsional moments M are applied to the laminate. Those loadings are<br />

computed by considering the stress state in each ply with the relations (3.9):<br />

⎧N1<br />

⎫ ⎧σ<br />

⎫<br />

h / 2 1<br />

⎧M1<br />

⎫ ⎧σ<br />

⎫<br />

h / 2 1<br />

⎪ ⎪ ⎪ ⎪<br />

⎪ ⎪ ⎪ ⎪<br />

N = ⎨N<br />

2 ⎬ = ∫ ⎨σ<br />

2 ⎬dz<br />

M = ⎨M<br />

2 ⎬ = ∫ ⎨σ<br />

2 ⎬zdz<br />

(3.9)<br />

⎪N<br />

⎪ −h / 2 ⎪ ⎪<br />

⎩ 6 ⎭ ⎩σ<br />

⎪<br />

6 ⎭<br />

M ⎪ −h / 2 ⎪ ⎪<br />

⎩ 6 ⎭ ⎩σ<br />

6 ⎭<br />

For a first order cinematic theory, where the displacement through the laminate’s<br />

thickness is linear in the z coordinate measured with respect to the mid-plane of the plate/shell<br />

(Figure 3.3), the vector of laminate’s strains εl is linked to the in-plane strains and the<br />

curvatures via the relation εl = ε + zκ<br />

0<br />

. With this definition it turns that the constitutive<br />

relations for a laminate are given by (3.10) where A, B and D are the in-plane, coupling and<br />

bending stiffness matrices of the laminate.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!