10.01.2013 Aufrufe

2.6M - 1. Institut für Theoretische Physik - Universität Stuttgart

2.6M - 1. Institut für Theoretische Physik - Universität Stuttgart

2.6M - 1. Institut für Theoretische Physik - Universität Stuttgart

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

Summary<br />

The acceptance probability is given by equation (2.55). Due to the presence of an<br />

external magnetic field, the ground state wavefunction will be complex-valued, just as the<br />

local energy. To overcome the fixed-phase approximation [1] and also to ensure that the<br />

simulation takes place in real space, the phase factor can be considered as a further weight<br />

of the branching term (see equation (2.68)). The phase factor ϕ( � R ′ , ∆τ) = e i∆τ Im EL(�R ′ )<br />

is a complex weight factor Υ (see equation (2.69)) and is multiplied by the local energy<br />

to calculate the statistical average. This technique is called released-phase DQMC [10].<br />

The ground state energy is given by:<br />

E0 =<br />

b<br />

1 �max<br />

bmax − bs + 1<br />

b=bs<br />

1<br />

s max<br />

s� max<br />

s=1<br />

� jmax<br />

j<br />

j =1 EL (� R ′ ) · Υj (s)<br />

�jmax j =1 Υj (s)<br />

. (9)<br />

The realisation of the computer algorithm is displayed in a Nassi-Shneiderman diagram<br />

in figure <strong>1.</strong><br />

Guiding Wavefunction: The Hamiltonian of a many-electron atom in an external magnetic<br />

field reads:<br />

ˆH =<br />

N�<br />

i=1<br />

�<br />

− 1<br />

� 2 ∂<br />

2 ∂x 2 +<br />

i<br />

∂2<br />

∂y 2 i<br />

+ ∂2<br />

∂z 2<br />

� �<br />

− iβ<br />

i<br />

with � B = B�ez, β = B/B0 and B0 = 2α2 m 2 e c 2<br />

xi<br />

∂<br />

∂yi<br />

− y ∂<br />

�<br />

∂xi<br />

+ β2 (x 2<br />

i + y 2 i )<br />

+ βˆσzi −<br />

2<br />

Z<br />

|�ri|<br />

�<br />

+ 1<br />

2<br />

N�<br />

i,j =1<br />

j �=i<br />

e� ∼ = 4.7 · 10 5 T, α = e2<br />

4πɛ0�c<br />

1<br />

|�ri − �rj |<br />

(10)<br />

. It is employed<br />

an ansatz for the guiding wavefunction ΨG as a product of a guiding wavefuntion Ψ ad<br />

determined by adiabatic approximation and the Jastrow factor Ψ JF . The adiabatic<br />

guiding wavefunction Ψad itself is based on an approach with a Slater determinant<br />

Ψ = 1<br />

�<br />

�<br />

� ψ1(�r1)<br />

�<br />

� ψ2(�r1)<br />

√ �<br />

N ! �<br />

�<br />

.<br />

�ψN<br />

(�r1)<br />

ψ1(�r2)<br />

ψ2(�r2)<br />

.<br />

ψN (�r2)<br />

· · ·<br />

· · ·<br />

. ..<br />

· · ·<br />

�<br />

ψ1(�rN ) �<br />

�<br />

ψ2(�rN ) �<br />

�<br />

� ,<br />

. �<br />

�<br />

ψN (�rN ) �<br />

(11)<br />

composed of single-particle wavefunctions ψi. Those single-particle wavefunctions are<br />

assumed as products of a z-dependent, not yet known wavefunction Pνm(z) of the longitudinal<br />

Coulomb excitation along the z axis (ν stands for the number of nodes), a ρ<br />

and ϕ dependent Landau state Φnm(ρ, ϕ) with the energy levels En = �ωc(n + 1),<br />

with<br />

2<br />

n = 0, 1, 2, . . . and projection of the angular momentum m (m = 0, −1, −2, . . . ) on the<br />

z axis, and a spinor state χ(¯s):<br />

128<br />

ψi(�r, ¯s) = ψνnm(z, ρ, ϕ, ¯s) = Pνm(z) · Φnm(ρ, ϕ) · χ(¯s) . (12)

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!