10.06.2013 Views

Fisheries in the Southern Border Zone of Takamanda - Impact ...

Fisheries in the Southern Border Zone of Takamanda - Impact ...

Fisheries in the Southern Border Zone of Takamanda - Impact ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Vegetation Assessment<br />

Importance value <strong>in</strong>dex (IVI) = CVI + Relative<br />

frequency<br />

The most appropriate measures <strong>of</strong> diversity to use<br />

for 1-ha plots are <strong>the</strong> Shannon-We<strong>in</strong>er <strong>in</strong>dex (H’) and<br />

Fischer’s <strong>in</strong>dex (α), which have been shown to be more<br />

representative <strong>of</strong> diversity <strong>in</strong> larger areas. Shannon’s<br />

<strong>in</strong>dex is a measure <strong>of</strong> uncerta<strong>in</strong>ty, provid<strong>in</strong>g <strong>the</strong><br />

probability <strong>of</strong> pick<strong>in</strong>g a dom<strong>in</strong>ant species at random:<br />

∑<br />

H ©<br />

= − pi<br />

ln pi<br />

where p i is <strong>the</strong> proportion <strong>of</strong> <strong>in</strong>dividuals <strong>of</strong> a species<br />

(Relative density <strong>of</strong> species/100), and ln is <strong>the</strong> natural<br />

logarithm. The maximum value <strong>of</strong> H’ is <strong>the</strong> natural<br />

logarithm <strong>of</strong> <strong>the</strong> number <strong>of</strong> species (ln S). Evenness (E)<br />

describes <strong>the</strong> distribution among species, reach<strong>in</strong>g a<br />

value <strong>of</strong> 1 when all species have equal numbers <strong>of</strong><br />

<strong>in</strong>dividuals. Pielou’s evenness is described by <strong>the</strong><br />

follow<strong>in</strong>g equation:<br />

H ©<br />

E =<br />

ln S<br />

Fisher’s Index (α) is def<strong>in</strong>ed by <strong>the</strong> follow<strong>in</strong>g<br />

equation:<br />

⎛ N<br />

S = α ln ⎜1 +<br />

⎝ α<br />

⎞<br />

⎟<br />

⎠<br />

where α was calculated us<strong>in</strong>g Biodiversity Pr<strong>of</strong>essional.<br />

Alpha is particularly useful as it enables accurate<br />

extrapolation to larger population sizes.<br />

4 Results<br />

4.1 General floristics<br />

The results and discussion <strong>in</strong> this section are based on<br />

analysis <strong>of</strong> <strong>the</strong> data ga<strong>the</strong>red dur<strong>in</strong>g <strong>the</strong> present study.<br />

These data consist <strong>of</strong> 14,374 <strong>in</strong>dividual plant records<br />

from TFR that were ga<strong>the</strong>red dur<strong>in</strong>g <strong>the</strong> field surveys. In<br />

summary, <strong>the</strong>se plant records:<br />

• total 4,628 <strong>in</strong>dividual trees ≥ 10cm dbh measured <strong>in</strong><br />

ten BDPs and represent<strong>in</strong>g 351 species, 210 genera,<br />

and 58 families. Cumulatively, <strong>the</strong> trees have a mean<br />

dbh <strong>of</strong> 29 cm and a mean basal area (BA) <strong>of</strong> 30.8<br />

m 2 /ha.<br />

• total 8,885 <strong>in</strong>dividuals, represent<strong>in</strong>g 442 species, 243<br />

genera, and 75 families recorded from MWPs;<br />

• total 861 voucher specimens represent<strong>in</strong>g 612<br />

species, 277 genera, and 91 families.<br />

In all, <strong>the</strong> 14,374 <strong>in</strong>dividual records represent 953<br />

species, 504 genera, and 113 families (Appendix 1).<br />

4.2 Vegetation classification<br />

The plots were locaed <strong>in</strong> five ma<strong>in</strong> habit types. For<br />

purposes <strong>of</strong> this study, <strong>the</strong>se are def<strong>in</strong>ed as lowland forest<br />

(with a number <strong>of</strong> sub-types), lowland ridge forest, midelevation<br />

forest, montane forest, and high-altitude<br />

grassland. Table 2 shows general characteristics <strong>of</strong> each<br />

plot.<br />

4.2.1 Lowland forest<br />

Lowland forest covers much <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn half <strong>of</strong> TFR<br />

and despite some variation, is somewhat homogenous <strong>in</strong><br />

its structure and composition. A common component <strong>of</strong><br />

<strong>the</strong> lowland forests is <strong>the</strong> family Huaceae, represented by<br />

<strong>the</strong> extremely gregarious Afrostyrax kamerunensis that<br />

occurs <strong>in</strong> great abundance (Figure 2). This species is<br />

present throughout <strong>the</strong> forest formations <strong>of</strong> <strong>the</strong> entire<br />

TFR. The Irv<strong>in</strong>giaceae is well represented <strong>in</strong> <strong>the</strong> lowland<br />

forest and exhibits particularly high levels <strong>of</strong> diversity.<br />

Along with Kla<strong>in</strong>edoxa gabonensis and Desbordesia<br />

glaucescens, <strong>the</strong> genus Irv<strong>in</strong>gia is represented by I. gabonensis,<br />

I. wombolu, I. robur, I. Smithii, and I. grandifolia.<br />

O<strong>the</strong>r large canopy trees <strong>in</strong>clude Alstonia congensis,<br />

Blighia welwitchii, Canarium schwe<strong>in</strong>furthii, Carapa<br />

procera, Duboscia macrocarpa, Entandrophragma<br />

angolense, Lophira alata, Lovoa trichilioides, Ongokea<br />

gore, Panda oleosa, Parkia bicolor, Par<strong>in</strong>ari exselsa,<br />

Pentaclethra macrophylla, Pentadesma butyracea,<br />

Piptandeniastrum africanum, Plagiostylea africanum,<br />

Pterocarpus soyauxii, Symphonia globulifera, and<br />

Term<strong>in</strong>alia <strong>in</strong>vorensis. To a lesser extent, <strong>the</strong><br />

Caesalp<strong>in</strong>iaceae is also represented <strong>in</strong> <strong>the</strong> forest canopy,<br />

23<br />

SI/MAB Series #8, 2003

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!