09.04.2015 Views

ABSTRACTS from 16th International COnference on ... - CRRT Online

ABSTRACTS from 16th International COnference on ... - CRRT Online

ABSTRACTS from 16th International COnference on ... - CRRT Online

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>ABSTRACTS</str<strong>on</strong>g> FROM 17 TH INTERNATIONAL CONFERENCE ON <strong>CRRT</strong>,<br />

SAN DIEGO, FEB 14-17, 2012<br />

differentiati<strong>on</strong> toward a tubular epithelial<br />

cell phenotype. The results of the present<br />

study suggest a potential role of PFC in<br />

the improvement of RAD therapy and in<br />

the treatment of ischemic and sepsisassociated<br />

AKI.<br />

74. A Multiscale Model of Citrate<br />

Dynamics during Citrate Regi<strong>on</strong>al<br />

Anticoagulati<strong>on</strong> for <strong>CRRT</strong><br />

Steven A C<strong>on</strong>rad<br />

Louisiana State University Health<br />

Sciences Center in Shreveport, LA,<br />

Regi<strong>on</strong>al anticoagulati<strong>on</strong> with citrate<br />

provides effective anticoagulati<strong>on</strong> during<br />

<strong>CRRT</strong>. Metabolic alkalosis and citrate<br />

accumulati<strong>on</strong> are known but<br />

incompletely characterized<br />

complicati<strong>on</strong>s. A mathematical model of<br />

citrate and bicarb<strong>on</strong>ate transport during<br />

<strong>CRRT</strong> would permit investigati<strong>on</strong> of the<br />

interacti<strong>on</strong> of factors c<strong>on</strong>tributing to this<br />

problem. Multiscale models combine<br />

mathematical modeling approaches that<br />

are based <strong>on</strong> vastly different physical<br />

scales. A multiscale model was<br />

developed which incorporates a finite<br />

element model of solute handling in<br />

hollow fibers (microliter scale) with a<br />

dynamic compartment model of solute<br />

distributi<strong>on</strong> in extracellular fluid (liter<br />

scale). This model can simultaneously<br />

simulate the transport of citrate and<br />

bicarb<strong>on</strong>ate in a hollow fiber dialyzer<br />

during therapy as well as the<br />

accumulati<strong>on</strong>, metabolism and<br />

eliminati<strong>on</strong> of citrate in body<br />

compartments. The finite element<br />

comp<strong>on</strong>ent is based <strong>on</strong> a partial<br />

differential equati<strong>on</strong> model previously<br />

presented at this forum (<strong>CRRT</strong>, 22), by<br />

extending it <str<strong>on</strong>g>from</str<strong>on</strong>g> single solute transport<br />

(urea) to both citrate and bicarb<strong>on</strong>ate.<br />

The model includes both momentum<br />

transport (blood and dialysate flows) and<br />

mass transport (solute). The influence of<br />

protein c<strong>on</strong>centrati<strong>on</strong>, osmotic forces,<br />

hematocrit and the Fåhræus-Lindqvist<br />

effect <strong>on</strong> fluid flux have also been added<br />

to the previous model. The dynamic<br />

compartment model is a singlecompartment<br />

lumped parameter mass<br />

transport model of both citrate and<br />

bicarb<strong>on</strong>ate. Model parameters include<br />

volume of distributi<strong>on</strong>, extracorporeal<br />

blood flow and outlet c<strong>on</strong>centrati<strong>on</strong>s,<br />

and reacti<strong>on</strong> rate for citrate to<br />

bicarb<strong>on</strong>ate c<strong>on</strong>versi<strong>on</strong>. The<br />

compartment model is linked to the<br />

finite element model through integrati<strong>on</strong><br />

of solute flux <str<strong>on</strong>g>from</str<strong>on</strong>g> the hemofilter as a<br />

compartment input, and mixed<br />

c<strong>on</strong>centrati<strong>on</strong> in the compartment as a<br />

finite element input. This multiscale<br />

approach enables the evaluati<strong>on</strong> of a<br />

number of parameters that affect citrate<br />

handling leading to citrate accumulati<strong>on</strong><br />

and metabolic alkalosis: mode of support<br />

(SCUF, hemofiltrati<strong>on</strong>, hemodialysis,<br />

hemodiafiltrati<strong>on</strong>), extracorporeal blood<br />

flow, hemofiltrati<strong>on</strong> rate, dialysate flow<br />

rate and compositi<strong>on</strong> (bicarb<strong>on</strong>ate- vs.<br />

saline-based), citrate infusi<strong>on</strong> rate and<br />

c<strong>on</strong>centrati<strong>on</strong>, and citrate metabolic<br />

eliminati<strong>on</strong> rate (normal vs. prol<strong>on</strong>ged).<br />

As a dynamic model, it can simulate<br />

these parameters over time scales<br />

ranging <str<strong>on</strong>g>from</str<strong>on</strong>g> minutes to days, thereby<br />

suitable for evaluating operating<br />

parameters during c<strong>on</strong>tinuous therapies.<br />

75. Pharmacokinetics of Imipenem in<br />

C<strong>on</strong>tinuous Venovenous<br />

Hemodialysis (CVVHD) are<br />

related to severity of illness and<br />

dialyzer type.<br />

William H Fissell, Milen Amde, Seth R<br />

Bauer, Charbel A Salem, Michael J<br />

C<strong>on</strong>nor<br />

Cleveland Clinic, Emory University<br />

Background: Sepsis is the leading cause<br />

180

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!