27.04.2016 Views

Callister - An introduction - 8th edition

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I4 • Index<br />

Crack configurations, in<br />

ceramics, 483<br />

Crack critical velocity, 482–483<br />

Crack formation, 236<br />

in ceramics, 482–483<br />

fatigue and, 259–261<br />

glass, 517<br />

Crack propagation, 236. See also<br />

Fracture mechanics<br />

in brittle fracture, 239–242<br />

in ceramics, 480–485<br />

in ductile fracture, 236–237<br />

fatigue and, 259–260<br />

Cracks:<br />

stable vs. unstable, 236<br />

Crack surface displacement<br />

modes, 245<br />

Crazing, 579<br />

Creep, 265–270, G2<br />

ceramics, 491<br />

influence of temperature and stress<br />

on, 266–268<br />

mechanisms, 268<br />

in polymers, 578<br />

stages of, 265–266<br />

steady-state rate, 266<br />

viscoelastic, 578<br />

Creep compliance, 578<br />

Creep modulus, 578<br />

Creep rupture tests, 266<br />

data extrapolation, 268–269<br />

Crevice corrosion, 694–695, G2<br />

Cristobalite, 464, 479, 480<br />

Critical cooling rate,<br />

ferrous alloys, 369–370<br />

glass-ceramics, 503–504<br />

Critical fiber length, 635<br />

Critical resolved shear stress,<br />

205, G2<br />

as related to dislocation<br />

density, 232<br />

Critical stress (fracture), 243<br />

Critical temperature,<br />

superconductivity, 829, 831<br />

Critical velocity (crack), 482–483<br />

Crosslinking, 546, G2<br />

elastomers, 588–590<br />

influence on viscoelastic<br />

behavior, 577<br />

thermosetting polymers, 551<br />

Crystalline materials, 46, 72, G2<br />

defects, 91–107<br />

single crystals, 72, G11<br />

Crystallinity, polymers, 552–556, G2<br />

influence on mechanical<br />

properties, 585<br />

Crystallites, 556, G2<br />

Crystallization, polymers, 590–591<br />

Crystallographic directions, 57–63<br />

easy and hard magnetization, 819<br />

families, 59<br />

hexagonal crystals, 60–63<br />

Crystallographic planes, 63–68<br />

atomic arrangements, 66–67<br />

close-packed, ceramics, 460–462<br />

close-packed, metals, 69–71<br />

diffraction by, 74–76<br />

families, 67<br />

Crystallographic point coordinates,<br />

55–56<br />

Crystal structures, 46–55, G2. See<br />

also Body-centered cubic<br />

structure; Close-packed crystal<br />

structures; Face-centered cubic<br />

structure; Hexagonal closepacked<br />

structure<br />

ceramics, 453–462<br />

close-packed, ceramics, 460–461<br />

close-packed, metals, 69–71<br />

determination by x-ray diffraction,<br />

74–78<br />

selected metals, 47<br />

types, ceramics, 453–462<br />

types, metals, 47–51, 69–71<br />

Crystallization (ceramics), 504,<br />

518, G2<br />

Crystal systems, 52–55, G2<br />

Cubic crystal system, 52, 54<br />

Cubic ferrites, 809–813<br />

Cunife, 823, 824<br />

Cup-and-cone fracture, 237<br />

Curie temperature, 813, G3<br />

ferroelectric, 766<br />

ferromagnetic, 784<br />

Curing, plastics, 612<br />

Current density, 722<br />

Cyclic stresses, 255–256<br />

D<br />

Damping capacity, steel vs.<br />

cast iron, 404<br />

Data scatter, 181–182<br />

Debye temperature, 784<br />

Decarburization, 146<br />

Defects, see also Dislocations<br />

atomic vibrations and, 106–107<br />

dependence of properties on, 91<br />

in ceramics, 472–476<br />

interfacial, 102–106<br />

point, 92–99, 472–474, G9<br />

in polymers, 558–559<br />

surface, 105<br />

volume, 106<br />

Defect structure, 472, G3<br />

Deformation:<br />

elastic, see Elastic deformation<br />

elastomers, 588–589<br />

plastic, see Plastic deformation<br />

Deformation mechanism maps<br />

(creep), 268<br />

Deformation mechanisms<br />

(semicrystalline polymers),<br />

elastic deformation, 582, 583<br />

plastic deformation, 528, 584<br />

Degradation of polymers,<br />

707–711, G3<br />

Degree of polymerization, 542, G3<br />

Degrees of freedom, 316–318<br />

Delayed fracture, 481<br />

Density:<br />

computation for ceramics, 462–463<br />

computation for metal alloys, 97<br />

computation for metals, 51–52<br />

computation for polymers, 555–556<br />

of dislocations, 200<br />

linear atomic, 68<br />

planar atomic, 69<br />

polymers (values for), 572<br />

ranges for material types (bar<br />

chart), 6<br />

relation to percent crystallinity for<br />

polymers, 554<br />

values for various materials,<br />

A3–A6<br />

Design, component, 874<br />

Design examples:<br />

cold work and recrystallization,<br />

223<br />

conductivity of a p-type<br />

semiconductor, 745–746<br />

cubic mixed-ferrite magnet,<br />

812–813<br />

creep rupture lifetime for an S-590<br />

steel, 269<br />

nonsteady-state diffusion, 136–137<br />

spherical pressure vessel, failure of,<br />

247–250<br />

steel shaft, alloy/heat treatment of,<br />

434–435<br />

tensile-testing apparatus, 183–184<br />

tubular composite shaft, 651–653<br />

Design factor, 182<br />

Design stress, 182, G3<br />

Dezincification, of brass, 697–698<br />

Diamagnetism, 805, G3<br />

Diamond, 468–469<br />

as abrasive, 507<br />

bonding energy and melting<br />

temperature, 31<br />

cost, A34<br />

films, 468–469<br />

hardness, 491<br />

thermal conductivity value, A22<br />

Diamond cubic structure, 468

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!