05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

70 Chapter 5. Towards unsolvable equations<br />

one will have ϖ = 1.2.3.4 . . . µ and the coefficient M will equal the sum <strong>of</strong> all the<br />

obtained functions, the coefficient N will equal the sum <strong>of</strong> all products <strong>of</strong> these<br />

functions multiplied two by two, the coefficient P will equal the sum <strong>of</strong> all products<br />

<strong>of</strong> the functions multiplied three by three, and so on. [. . . ]<br />

And since we have demonstrated above that the expression Θ must necessarily<br />

be a rational function <strong>of</strong> t and the coefficients m, n, p, . . . <strong>of</strong> the proposed equation,<br />

it follows that the quantities M, N, P, . . . are necessarily rational functions<br />

<strong>of</strong> m, n, p, . . . which one can find directly as we have seen done in the preceding<br />

sections.” 38<br />

Expressed in modern mathematical language, the first part <strong>of</strong> the above result is<br />

the equivalent <strong>of</strong> the Lagrange’s <strong>The</strong>orem <strong>of</strong> group theory, which states that the order<br />

<strong>of</strong> any subgroup divides the order <strong>of</strong> the group. As we shall see in section 5.6, the<br />

first general pro<strong>of</strong> was given by A.-L. CAUCHY (1789–1857) based on his approach to<br />

working with permutations.<br />

<strong>The</strong> second part <strong>of</strong> the result was used extensively by ABEL, although he never<br />

gave references when applying it. ABEL used the result in a form equivalent to the<br />

following theorem, formulated in a compact notation.<br />

<strong>The</strong>orem 1 If φ � �<br />

x1, . . . , xµ is a rational function which takes on the values φ1, . . . , φϖ under<br />

all permutations <strong>of</strong> its arguments x1, . . . , xµ and the equation<br />

Θ =<br />

ϖ<br />

ϖ<br />

∏ (v − φk) = ∑ Akv k=1<br />

k=0<br />

k<br />

is formed, then all the coefficients A0, . . . , Aϖ are symmetric functions <strong>of</strong> x1, . . . , xµ. ✷<br />

(5.6)<br />

<strong>The</strong> link between the above theorem as used by ABEL and LAGRANGE’S second<br />

result can be obtained through a result which I denote Waring’s formulae. <strong>The</strong>se for-<br />

mulae, obtained by NEWTON and WARING by different routes and described in the<br />

next section, were incorporated by LAGRANGE in his work and must have been ac-<br />

cepted as common knowledge in LAGRANGE’S era. As quoted above, LAGRANGE’S<br />

38 “D’où l’on voit clairement que le nombre des fonctions différentes doit croître suivant les produits<br />

des nombres naturels<br />

1, 1.2, 1.2.3, 1.2.3.4, . . . , 1.2.3.4.5 . . . µ.<br />

Ayant toutes ces fonctions on aura donc les racines de l’équation Θ = 0; de sorte que, si on la<br />

représente par<br />

Θ = t ϖ − Mt ϖ−1 + Nt ϖ−2 − Pt ϖ−3 + · · · = 0,<br />

on aura ϖ = 1.2.3.4 . . . µ; et le coefficient M sera égal à la somme de toutes les fonctions trouvées,<br />

le coefficient N égal à la somme de tous les produits de ces fonctions multipliées deux à deux, le<br />

coefficient P égal à la somme de tous les produits des mêmes fonctions multipliées trois à trois, et<br />

ainsi de suite. [. . . ]<br />

Et comme nous avons démontré ci-dessus que l’expression de Θ doit être nécessairement une fonction<br />

rationnelle de t et des coefficients m, n, p, . . . de l’équation proposée, il s’ensuit que les quantités<br />

M, N, P, . . . seront nécessairement des fonctions ratinnelles de m, n, p, . . . qu’on pourra trouver<br />

directement, comme nous l’avons pratiqué dans les Sections précédentes.” (Lagrange, 1770–1771,<br />

369).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!