05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

17.1. Infinite representations 323<br />

17.1.2 Infinite sums<br />

In order to express φ (α) by an infinite series, ABEL set β = α<br />

2n+1 . Thus,<br />

φ (α) = φ ((2n + 1) β) = 1<br />

2n + 1<br />

n<br />

∑<br />

n<br />

∑ (−1)<br />

m=−n µ=−n<br />

m+µ φ<br />

�<br />

β +<br />

�<br />

mω + µ ¯ωi<br />

.<br />

2n + 1<br />

Following a string <strong>of</strong> manipulations designed to group the terms <strong>of</strong> the right hand<br />

side, ABEL reduced the problem to the search for the limit <strong>of</strong> the double sum<br />

with<br />

n−1 n−1<br />

∑ ∑<br />

m=0 µ=0<br />

ψ (m, µ) = 1<br />

2n + 1<br />

(−1) m+µ ψ (m, µ) (17.4)<br />

2φ � α<br />

φ 2 � α<br />

2n+1<br />

2n+1<br />

in which ζ (x) = f (x) F (x) and εµ =<br />

In order to find the limit <strong>of</strong> (17.4), ABEL remarked,<br />

and<br />

� ζ<br />

� − φ 2<br />

�<br />

m + 1<br />

2<br />

� �<br />

εµ<br />

2n+1<br />

�<br />

εµ<br />

2n+1<br />

�<br />

�<br />

ω +<br />

�<br />

µ + 1<br />

�<br />

2<br />

“one attempts to put the preceding quantity [here (17.4)] on the form<br />

P + v,<br />

in which P is independent <strong>of</strong> n and v is a quantity which has the limit zero, because<br />

then the quantity P is exactly the limit which is sought.” 2<br />

ABEL had a candidate in mind for the expression P when he defined<br />

θ (m, µ) = 2α<br />

α 2 − ε 2 µ<br />

ψ (m, µ) − θ (m, µ) =<br />

2α<br />

(2n + 1)<br />

2 Rµ.<br />

His candidate was the double sum ∑ ∞ m=0 ∑ ∞ µ=0 (−1) m+µ θ (m, µ) and he proceeded in<br />

the following way in obtaining this limit.<br />

For each value <strong>of</strong> m, ABEL argued, the difference was<br />

n−1<br />

∑<br />

µ=0<br />

(−1) µ n−1<br />

(ψ (m, µ) − θ (m, µ)) = 2α ∑<br />

µ=0<br />

2 “il faut essayer de mettre la quantité précédente sous la forme<br />

P + v,<br />

(−1) µ Rµ<br />

,<br />

2<br />

(2n + 1)<br />

où P est indépendant de n, et v une quantité qui a zéro pour limité, car alors la quantité P sera<br />

précisément la limite dont il s’agit.” (N. H. <strong>Abel</strong>, 1827b, 156).<br />

¯ωi.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!