05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.3 Refocusing on the equation . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

8.4 Further ideas on the theory <strong>of</strong> equations . . . . . . . . . . . . . . . . . . . 176<br />

8.5 General resolution <strong>of</strong> the problem by E. GALOIS . . . . . . . . . . . . . . 181<br />

IIIInterlude: ABEL and the ‘new rigor’ 189<br />

9 <strong>The</strong> nineteenth-century change in epistemic techniques 191<br />

10 Toward rigorization <strong>of</strong> analysis 193<br />

10.1 EULER’s vision <strong>of</strong> analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 193<br />

10.2 LAGRANGE’s new focus on rigor . . . . . . . . . . . . . . . . . . . . . . . 197<br />

10.3 Early rigorization <strong>of</strong> theory <strong>of</strong> series . . . . . . . . . . . . . . . . . . . . . 198<br />

10.4 New types <strong>of</strong> series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br />

11 CAUCHY’s new foundation for analysis 207<br />

11.1 Programmatic focus on arithmetical equality . . . . . . . . . . . . . . . . 207<br />

11.2 CAUCHY’s concepts <strong>of</strong> limits and infinitesimals . . . . . . . . . . . . . . . 209<br />

11.3 Divergent series have no sum . . . . . . . . . . . . . . . . . . . . . . . . . 210<br />

11.4 Means <strong>of</strong> testing for convergence <strong>of</strong> series . . . . . . . . . . . . . . . . . . 212<br />

11.5 CAUCHY’s pro<strong>of</strong> <strong>of</strong> the binomial theorem . . . . . . . . . . . . . . . . . . 214<br />

11.6 Early reception <strong>of</strong> CAUCHY’s new rigor . . . . . . . . . . . . . . . . . . . 218<br />

12 ABEL’s reading <strong>of</strong> CAUCHY’s new rigor and the binomial theorem 221<br />

12.1 ABEL’s critical attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223<br />

12.2 Infinitesimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228<br />

12.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229<br />

12.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233<br />

12.5 ABEL’s “exception” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238<br />

12.6 A curious reaction: Lehrsatz V . . . . . . . . . . . . . . . . . . . . . . . . . 241<br />

12.7 From power series to absolute convergence . . . . . . . . . . . . . . . . . 246<br />

12.8 Product theorems <strong>of</strong> infinite series . . . . . . . . . . . . . . . . . . . . . . 251<br />

12.9 ABEL’s pro<strong>of</strong> <strong>of</strong> the binomial theorem . . . . . . . . . . . . . . . . . . . . 254<br />

12.10Aspects <strong>of</strong> ABEL’s binomial paper . . . . . . . . . . . . . . . . . . . . . . . 260<br />

13 ABEL and OLIVIER on convergence tests 265<br />

13.1 OLIVIER’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265<br />

13.2 ABEL’s counter example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269<br />

13.3 ABEL’s general refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 271<br />

13.4 More characterizations and tests <strong>of</strong> convergence . . . . . . . . . . . . . . 272<br />

14 Reception <strong>of</strong> ABEL’s contribution to rigorization 277<br />

14.1 Reception <strong>of</strong> ABEL’s rigorization . . . . . . . . . . . . . . . . . . . . . . . 277<br />

iii

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!