05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

240 Chapter 12. ABEL’s reading <strong>of</strong> CAUCHY’s new rigor and the binomial theorem<br />

❜<br />

✟ ✟✟✟✟✟✟✟✟✟<br />

� �<br />

❜<br />

✟ ✟✟✟✟✟✟✟✟✟<br />

� �<br />

❜<br />

✟ ✟✟✟✟✟✟✟✟✟<br />

� �<br />

−3π −2π −π π 2π 3π<br />

❜<br />

Figure 12.2: Graphical representation <strong>of</strong> ABEL’s “Exception”, ∑ ∞ n=1<br />

<strong>The</strong> series<br />

π 2<br />

− π 2<br />

❜<br />

❜<br />

(−1) n−1 sin nx<br />

n .<br />

However, it appears to me that this theorem admits [or suffers] exceptions.<br />

For instance, the series<br />

sin φ − 1 1<br />

sin 2φ + sin 3φ − . . . etc.<br />

2 3<br />

is discontinuous for every value (2m + 1) π <strong>of</strong> x where m is an integer. As is well<br />

known, a multitude <strong>of</strong> series with similar properties exist.” 35<br />

∞ (−1)<br />

∑<br />

n=1<br />

n−1 sin nx<br />

n<br />

(12.14)<br />

is a particularly simple trigonometric series: it is the Fourier series expansion <strong>of</strong> the<br />

function f (x) = x 2 on the interval ]−π, π[ (see figure 12.2). As such, it can be found<br />

in FOURIER’S works, for instance in the Théorie analytique de la chaleur, and even as<br />

a side result in one <strong>of</strong> EULER’S papers. 36 Possibly because EULER’S and FOURIER’S<br />

arguments for the convergence <strong>of</strong> the series (12.14) might have been wanting from<br />

the perspective <strong>of</strong> the new rigor, ABEL explicitly derived it as a result <strong>of</strong> some <strong>of</strong> the<br />

formulae proved in the binomial paper (see page 259, below).<br />

Aspects <strong>of</strong> ABEL’S “exception”. For subsequent reference, a few points concerning<br />

ABEL’S “exception” must be brought to attention. First, the exception was one <strong>of</strong> the<br />

35 “Anmerkung. In der oben angeführten Schrift des Herrn Cauchy (Seite 131) findet man folgende<br />

Lehrsatz:<br />

»Wenn die verschiedenen Glieder der Reihe<br />

u0 + u1 + u2 + u3 + . . . u.s.w.<br />

Functionen einer und derselben veränderlichen Größe sind, und zwar stetige Functionen, in Beziehung<br />

auf diese Veränderliche, in der Nähe eines besonderen Werthes, für welchen die Reihe<br />

convergirt, so ist auch die Summe s der Reihe, in der Nähe jenes besonderen Werthes, eine stetige<br />

Function von x.«<br />

Es scheint mir aber, daß dieser Lehrsatz Ausnahmen leidet. So ist z. B. die Reihe<br />

sin φ − 1 1<br />

sin 2φ + sin 3φ − . . . u.s.w.<br />

2 3<br />

unstetig für jeden Werth (2m + 1) π von x, wo m eine ganze Zahl ist. Bekanntlich giebt es eine<br />

Menge von Reihen mit ähnlichen Eigenschaften.” (N. H. <strong>Abel</strong>, 1826f, 316, footnote).<br />

36 (Fourier, 1822, 182, 241) and (L. Euler, 1754, 584); see also (I. Grattan-Guinness, 1970b, 84–85).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!