05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

216 Chapter 11. CAUCHY’s new foundation for analysis<br />

and if the terms um and v k were positive, the difference (11.6) would converge to zero<br />

as a consequence <strong>of</strong> the theorem for series <strong>of</strong> positive terms. If the terms were not all<br />

positive, CAUCHY could still apply the theorem to the corresponding series <strong>of</strong> numer-<br />

ical values ρn = |un| and ρ ′ n = |vn|. <strong>The</strong>refore, in this case, the difference (11.6) would<br />

still converge to zero and yet majorize the series <strong>of</strong> the original terms. Thus, CAUCHY<br />

had established the convergence and the product equation for absolutely convergent<br />

series <strong>of</strong> real terms.<br />

CAUCHY’S concept <strong>of</strong> continuous functions. CAUCHY’S concept <strong>of</strong> continuous func-<br />

tions (see below) was among the main innovations <strong>of</strong> his new calculus. <strong>The</strong>re, in the<br />

definition and in the pro<strong>of</strong>s, his new foundation on an algebraic concept <strong>of</strong> limits<br />

played its most important role. In the eighteenth century, EULER had used the term<br />

continuous to indicate that the function was defined by the same analytic expression<br />

throughout its domain. 21 However, in the Cours d’analyse, CAUCHY took it upon him-<br />

self to completely redefine the concept <strong>of</strong> continuous functions in order to capture a<br />

different property <strong>of</strong> the functions: their continuous, unbroken variation.<br />

“Let f (x) be a function <strong>of</strong> the variable x and suppose that for every value <strong>of</strong><br />

x between two given boundaries this function always takes a unique and finite<br />

value. If, starting from a value <strong>of</strong> x contained between these boundaries, one attributes<br />

to x an infinitely small increment α, the function will receive the increment<br />

f (x + α) − f (x)<br />

which depends simultaneously on the new variable α and the value <strong>of</strong> x. Between<br />

the two boundaries assigned to the variable x, the function f (x) will be a continuous<br />

function <strong>of</strong> this variable if for every value <strong>of</strong> x between these boundaries, the<br />

numerical value <strong>of</strong> the difference<br />

f (x + α) − f (x)<br />

decreases indefinitely with that [numerical value] <strong>of</strong> α. In other words, the function<br />

f (x) remains continuous with respect to x between the given boundaries if, between<br />

these boundaries, an infinitely small increment <strong>of</strong> the variable produces an infinitely small<br />

increment <strong>of</strong> the function.” 22<br />

21 (L. Euler, 1748). See (Lützen, 1978) and (Youschkevitch, 1976).<br />

22 “Soit f (x) une fonction de la variable x, et supposons que, pour chaque valeur de x intermédiaire<br />

entre deux limites données, cette fonction admette constamment une valeur unique et finie. Si, en<br />

partant d’une valeur de x comprise entre ces limites, on attribue à la variable x un accroissement<br />

infiniment petit α, la fonction elle-même recevra pour accroissement la différence<br />

f (x + α) − f (x) ,<br />

qui dépendra en même temps de la nouvelle variable α et da la valeur de x. Cela posé, la fonction<br />

f (x) sera, entre les deux limites assignées à la variable x, fonction continue de cette variable, si,<br />

pour chaque valeur de x intermédiaire entre ces limites, la valeur numérique de la différence<br />

f (x + α) − f (x)<br />

décroit indéfiniment avec celle de α. En d’autres termes, la fonction f (x) restera continue par rapport<br />

à x entre les limites données, si, entre ces limites, un accroissement infiniment petit de la va-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!