05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

106 Chapter 6. Algebraic insolubility <strong>of</strong> the quintic<br />

established. C. SKAU considers the Euclidean algorithm among the central pillars <strong>of</strong><br />

ABEL’S impossibility pro<strong>of</strong>. 22 In section 7.3.1, I illustrate how it, indeed, — together<br />

with the concept <strong>of</strong> irreducibility — played an important role in ABEL’S theory <strong>of</strong><br />

equations.<br />

In the very same paragraph, ABEL let<br />

µ<br />

∑ tuz<br />

u=0<br />

u = 0 (6.8)<br />

denote the factor <strong>of</strong> (6.7) <strong>of</strong> lowest degree with rational coefficients and continued with<br />

the following statement implicitly introducing irreducibility which ABEL had not used<br />

or defined thus far:<br />

and let<br />

“Let that equation [here (6.7)] be<br />

s0 + s1z + s2z 2 · · · + s k−1z k−1 + z k = 0<br />

t0 + t1z + t2z 2 · · · + tµ−1z µ−1 + z µ<br />

be a factor <strong>of</strong> its first term [left hand side], where t0, t1 etc. are rational functions<br />

<strong>of</strong> p, r0, r1 . . . rn−1; then also<br />

t0 + t1z + t2z 2 · · · + tµ−1z µ−1 + z µ = 0<br />

and it is clear, that it can be assumed to be impossible to find an equation <strong>of</strong> the<br />

same form <strong>of</strong> lower degree.” 23<br />

Thus, certain roots <strong>of</strong> (6.7) would also be roots <strong>of</strong> (6.8), ABEL argued, and the µ<br />

roots <strong>of</strong> (6.8) would also be roots <strong>of</strong> z n − p = 0. In the case µ = 1, it would be easy to<br />

write z, i.e. p 1 n , as a rational function <strong>of</strong> t0 and t1, and thereby as a rational function <strong>of</strong><br />

p, r0, . . . , rn−1 from (6.6), contrary to the assumption imposed by theorem 2.<br />

Since µ ≥ 2, ABEL let z and αz denote two distinct common roots <strong>of</strong> (6.8) and<br />

z n − p = 0. When he inserted them into (6.8), he obtained<br />

22 (Skau, 1990, 54).<br />

23 “Die Gleichung sei<br />

und<br />

µ−1<br />

∑ tu (α<br />

u=0<br />

u − α µ ) z u = 0 (6.9)<br />

s0 + s1z + s2z 2 · · · + s k−1z k−1 + z k = 0<br />

t0 + t1z + t2z 2 · · · + tµ−1z µ−1 + z µ<br />

ein Factor ihres ersten Gliedes, wo t0, t1 etc. rationale Functionen von p, r0, r1 . . . rn−1 sind, so ist<br />

auch<br />

t0 + t1z + t2z 2 · · · + tµ−1z µ−1 + z µ = 0<br />

und es ist klar, daß man es als unmöglich annehmen kann, eine Gleichung von niedrigerem Grade<br />

von der nemlichen Form zu finden.” (N. H. <strong>Abel</strong>, 1826a, 71).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!