05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

12.3. Convergence 229<br />

12.3 Convergence<br />

While ABEL’S definition and use <strong>of</strong> infinitesimals were not completely in the line <strong>of</strong><br />

CAUCHY’S new rigor, his concept <strong>of</strong> convergence — and the importance which he at-<br />

tributed to it — closely resembled CAUCHY’S.<br />

“Definition. An arbitrary<br />

v0 + v1 + v2 + · · · + vm etc.<br />

will be called convergent if the sum v0 + v1 + · · · + vm steadily approaches a certain<br />

limit for ever increasing values <strong>of</strong> m. This limit will be called the sum <strong>of</strong> the<br />

series. In the contrary case, the series is called divergent and therefore has no sum.<br />

From this definition follows that for a series to converge, it will be necessary and<br />

sufficient that the sum vm + vm+1 + · · · + vm+n steadily approach zero for ever<br />

increasing values <strong>of</strong> m whatever value n may have.” 23<br />

Just as CAUCHY had done, ABEL quickly related the convergence <strong>of</strong> a series to the<br />

Cauchy criterion and claimed that it constituted a necessary and sufficient condition<br />

for convergence. As described above, the assertion that convergence followed from<br />

the Cauchy criterion was later realized to be non-trivial, but in the 1820s it was con-<br />

sidered obvious. Although both CAUCHY and ABEL drew the connection between<br />

convergence and the Cauchy criterion, ABEL gave the criterion a much more central<br />

position in his theory <strong>of</strong> series as will be described below (see page 231).<br />

Immediately following his definition <strong>of</strong> convergence, ABEL made the rather curious<br />

remark that “in every arbitrary series, the general term vm will approach zero.” 24<br />

Judging from the context, an omission <strong>of</strong> the word “convergent” must have crept in at<br />

this point. 25<br />

An extended ratio test: Lehrsätze I&II. <strong>The</strong> first theorem <strong>of</strong> ABEL’S binomial paper<br />

is most remarkable because <strong>of</strong> its conceptual contents. Without pro<strong>of</strong> (see a modern-<br />

ized pro<strong>of</strong> in box 2), ABEL observed that for any series <strong>of</strong> positive terms<br />

23 “Erklärung. Eine beliebige Reihe<br />

∞<br />

∑ ρm<br />

m=0<br />

v0 + v1 + v2 + · · · + vm u.s.w.<br />

soll convergent heißen, wenn, für stets wachsende Werthe von m, die Summe v0 + v1 + · · · + vm sich<br />

immerfort eine gewisse Gränze nähert. Diese Grenze soll Summe der Reihe heißen. Im entgegengesetzten<br />

Falle soll die Reihe divergent heißen, und hat alsdann keine Summe. Aus dieser Erklärung<br />

folgt, daß, wenn eine Reihe convergiren soll, es nothwendig und hinreichend sein wird, daß, für<br />

stets wachsende Werthe von m, die Summe vm + vm+1 + · · · + vm+n sich Null immerfort nähert,<br />

welchen Werth auch n haben mag.” (ibid., 313).<br />

24 “In irgend einer beliebigen Reihe wird also das allgemeine Glied vm sich Null stets nähern.” (ibid.,<br />

313).<br />

25 This omission has therefore also been silently corrected in the French translation found in (N. H.<br />

<strong>Abel</strong>, 1839; N. H. <strong>Abel</strong>, 1881).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!