05.01.2013 Views

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

RePoSS #11: The Mathematics of Niels Henrik Abel: Continuation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

178 Chapter 8. A grand theory in spe<br />

where a0, . . . , aν−1 were roots <strong>of</strong> an irreducible <strong>Abel</strong>ian equation <strong>of</strong> degree ν and the<br />

coefficients A i were rational expressions in s. <strong>The</strong> root z0 <strong>of</strong> the initial equation was in<br />

turn given from the sequence s<br />

1<br />

µ<br />

0<br />

, . . . , s<br />

z0 = p0 +<br />

1<br />

µ<br />

ν−1<br />

ν−1<br />

∑<br />

u=0 k=0<br />

by a relationship <strong>of</strong> the form<br />

ν−1<br />

∑<br />

m<br />

φu (sk) · s<br />

u<br />

µ<br />

k ,<br />

where φ0, . . . , φν−1 were rational functions. In a letter to CRELLE dated 1826, ABEL<br />

had announced a result for equations <strong>of</strong> the fifth degree which was a particular case<br />

<strong>of</strong> the above.<br />

“When an equation <strong>of</strong> the fifth degree, whose coefficients are rational numbers,<br />

is algebraically solvable, one can always give its roots the following form:<br />

x = c + A · a 1 5 · a 2 5<br />

1 · a 4 5<br />

2 · a 3 5<br />

3 + A1 · a 1 5<br />

1 · a 2 5<br />

2 · a 4 5<br />

3 · a 3 5<br />

where<br />

�<br />

a = m + n 1 + e2 +<br />

�<br />

a1 = m − n<br />

�<br />

a2 = m + n<br />

+ A2 · a 1 5<br />

2 · a 2 5<br />

3 · a 4 5 · a 3 5<br />

1 + A3 · a 1 5<br />

3 · a 2 5 · a 4 5<br />

1 · a 3 5<br />

2<br />

�<br />

h<br />

�<br />

1 + e2 + h<br />

�<br />

1 + e2 − h<br />

�<br />

�<br />

a3 = m − n 1 + e2 +<br />

A = K + K ′ a + K ′′ a2 + K ′′′ aa2,<br />

A1 = K + K ′ a1 + K ′′ a3 + K ′′′ a1a3,<br />

A2 = K + K ′ a2 + K ′′ a + K ′′′ aa2,<br />

A3 = K + K ′ a3 + K ′′ a1 + K ′′′ a1a3.<br />

h<br />

�<br />

1 + e2 + �<br />

1 + e2 �<br />

,<br />

�<br />

1 + e2 − �<br />

1 + e2 �<br />

,<br />

�<br />

1 + e2 + �<br />

1 + e2 �<br />

,<br />

�<br />

1 + e2 − �<br />

1 + e2 �<br />

,<br />

<strong>The</strong> quantities c, b [h], e, m, n, K, K ′ , K ′′ , K ′′′ are all rational numbers.<br />

In this way, however, the equation x 5 + ax + b = 0 cannot be solved as long as<br />

a and b are arbitrary quantities.” 27<br />

Probably from his realization that all quantities involved in the solution are ratio-<br />

nals, square roots <strong>of</strong> rationals, or fifth roots <strong>of</strong> rationals, ABEL concluded that there<br />

were values <strong>of</strong> a and b for which the equation x 5 + ax + b = 0 could not be solvable by<br />

27 “Wenn eine Gleichung des fünften Grades, deren Coëfficienten rationale Zahlen sind, algebraisch<br />

auflösbar ist, so kann man immer den Wurzeln folgende Gestalt geben:<br />

x = c + A · a 1 5 · a 2 5<br />

1 · a 4 5<br />

2 · a 3 5<br />

3 + A1 · a 1 5<br />

1 · a 2 5<br />

2 · a 4 5<br />

3 · a 3 5<br />

+ A2 · a 1 5<br />

2 · a 2 5<br />

3 · a 4 5 · a 3 5<br />

1 + A3 · a 1 5<br />

3 · a 2 5 · a 4 5<br />

1 · a 3 5<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!