02.01.2015 Views

Portada Simposios - Supplements - Haematologica

Portada Simposios - Supplements - Haematologica

Portada Simposios - Supplements - Haematologica

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

264 <strong>Haematologica</strong> (ed. esp.), volumen 85, supl. 2, octubre 2000<br />

tropoyesis ineficaz, debido al acúmulo de uroporfirina<br />

I en el eritroblasto. No hay que destacar sin embargo<br />

la existencia de un componente hiporregenerativo.<br />

El mejor conocimiento de los genes implicados<br />

permitirá en el futuro aclarar estos puntos. Por otra<br />

parte, la identificación de la lesión molecular en el<br />

ADN de cada paciente facilitará establecer una buena<br />

correlación genotipo/fenotipo y avanzar en el<br />

pronóstico y tratamiento de cada enfermo.<br />

Bibliografía<br />

1. Mollin DL. Sideroblasts and sideroblastic anaemia. Br J Haematol<br />

1965; 11: 41.<br />

2. Goodman JR, Hall SG. Accumulation of iron in mitochondria of erythroblasts.<br />

Br J Haematol 1967; 13: 335.<br />

3. Cooley TB. A severe type of hereditary anemia with elliptocytosis. Interesting<br />

sequence of splenectomy. Am J Med Sci 1645; 209: 561.<br />

4. Bottomley SS. Porphyrin and iron metabolism in seroblastic anemia.<br />

Semin. Hematol 1977; 14: 169.<br />

5. Konopka L, Hoffbrand AV. Haem synthesis in sideroblastic anaemia. Br<br />

J Haematol 1979; 42: 73.<br />

6. Bisop DF, Kitchen H, Wood WA. Evidence for erythroid and nonerythroid<br />

forms of deltaaminolvulinate synthease. Arch Biochem Biophys<br />

1981; 206: 380.<br />

7. Yamamoto M, Fujita H, Watanabe N, Hayashi H, Kikuchi G. An immunolical<br />

study of delta-aminolevulinate synthase and delta-aminolevulinate<br />

dehydratase in liver and erythroid cells of rat. Arch Biochem<br />

Biophys 1986; 245: 76.<br />

8. Bishop DF. Two different genes encode delta-aminolevulinate synthase<br />

in humans: Nucleotide sequences of cDNAs for the housekeeping and<br />

erythroid genes. Nucleic Acids Res 1990; 18: 7187.<br />

9. Cotter PD, Willard HF, Gorski JL, Bishop DF. Assignment of human<br />

erythorid deltaaminolevulinate synthase (ALS2) to a distal subregion of<br />

band Xp 11.21 by PCR analysis of somatic cell hybrids containing X; autosome<br />

translocations. Genomics 1992; 13: 211.<br />

10. Bishop DF, Henderson AS, Astrin KH. Human delta-aminolevulinate<br />

synthase: Assignement of the housekeeping gene to 3p21 and the erythroid-specific<br />

gene to the X chromosome. Genomics 1990; 7: 207.<br />

11. Cotter PD, Baumann M, Bishop DF. Enzymatic defect in “X-linked” sideroblastic<br />

anemia: Molecular evidence for erythroid delta-aminolevulinate<br />

synthase deficiency. Proc Natl Acad Sci USA 1992; 89: 1028.<br />

12. Cotter PD, Rucknagel DL, Bishop DF. X-linked sideroblastic anemia:<br />

identification of the mutation in the erythroid-specific delta-aminolevulinate<br />

synthase gene (ALAS2) in the original family described by Cooley.<br />

Blood 1994; 84: 3915.<br />

13. Cotter PD, May A, Fitzsimons EJ, Houston T, Woodcock BE, Al-Sabah<br />

AI, Wong L, Bishop DF. Missense mutations in the erythroid delta-aminolevulinate<br />

synthase (ALAS2) gene in two pyridoxine-responsive patients<br />

initially diagnosedf with acquired refractory anemia and ringed sideroblasts.<br />

J Clin Invest 1995; 96: 2090.<br />

14. Furuyama K et al. Pyridoxine refractory X-linked sideroblastic anemia<br />

caused by a point mutation in the erythroid 5-aminolevulinate synthase<br />

gene. Blood 1997; 90: 822.<br />

15. Cotter PD, May A, Li L, Al-Sabah, Fitzsimons EJ, Cazzola M, Bishop DF.<br />

Four new mutations in the erythroid-specific 5-aminolevulinate synthase<br />

(ALAS2) gene causing X-linked sideroblastic anemia: increased pyridoxine<br />

responsiveness after removal of iron overloadby phenbotomy and<br />

coinheritance of hereditary hemochromatosis. Blood 1999; 93: 1757.<br />

16. Harigae H, Furuyama K, Kudo K, Hayashi N, Yamamoto M, Sassa S,<br />

Sasaki T. A novel mutation of the erythroid-specific gamma-aminolevulinate<br />

synthase gene in a patient with non-inherited pyridoxine-responsive<br />

sideroblastic anemia. Am J Hematol 1999; 62: 112.<br />

17. Prades E, Chambon C, Dailey TA, Dailey HA, Brière J, Grandchamp B.<br />

A new mutation of the ALAS2 gene in a large family with X-linked sideroblastic<br />

anemia. Hum Genet 1995; 95: 424.<br />

18. Cox Tc, Bottomley SS, Wilei JS, Bawden MJ, Matthews CS, May BK.<br />

X-linked pyridosine-responsive siderobasltic anemia due to a thr388-toser<br />

sustitution in erythroid 5-aminolevulinate synthase. New Eng J Med<br />

1994; 330: 675.<br />

19. Furuyama K, UnoR, Urabe A, Hayashi N, Fujita H, Kondo M, Sassa S,<br />

Yamamoto M. R411C mutation of the ALAs2 gene encodes a pirydoxine-responsive<br />

ezyme with low activity. Br J Haematol 1998; 103: 839.<br />

20. Edgar AJ, losowsky MS, Noble JS, Wickramasinghe SN. Identification<br />

od an arginine452 to histidine substotution in the erythroid 5-aminolaevulinate<br />

synthetase gene in a large pedigree with X-linked hereditary sideroblastic<br />

anaemia. Eur J Haematol 1997; 58: 1.<br />

21. Edgar AJ, Wickramasinghe SN. Hereditary sideroblastic anaemia due to<br />

a mutation in exon 10 of the erythroid 5-aminolaevulinate synthase<br />

gene. Br J Haematol 1998; 100: 389.<br />

22. Edgar AJ, Vidyatolake HM, Wickramasinghe SN. X-linked sideroblastic<br />

anaemia due to a mutation in the eryhroid 5-aminoevulinate synthase<br />

gene leading to an arginine 170 to leucine substitution. Eur J Haematol<br />

1998; 61: 55.<br />

23. Harigae H etal. A novel mutation of the erythroid-specific delta-aminolaevulinate<br />

synthase gene in a patient with X-linked sideroblastic anaemia.<br />

Br J Haematol 1999; 106: 175.<br />

24. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller<br />

DM. Mutation of a putative mitochondrial iron transporter gene<br />

(ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum<br />

MolGenet 1999; 8: 743.<br />

25. Pagon RA, Bird TD, Detter JC, Pierce I. Hereditary sideroblastic anaemia<br />

and ataxia: an X linked recessive disorder. J Med Genet 1985; 22: 267.<br />

26. Lee Gr, McDiarmid WD, Cartwright GE, Wintrobe MM. Hereditary<br />

X-linked, sideroachrestic anemia. The isolation of two erythrocyte populations<br />

differing in Xga blood type and porphyrin content. Blood<br />

1968; 32: 59.<br />

27. Amos RJ, Miller ALC, Amess Jal. Autosomal inheritance of sideroblastic<br />

anaemia. Clin Lab Haematol 1988; 10: 347.<br />

28. Kasturi J, Basha HM, Smeda SH, Swhli M. Hereditary sideroblastic anaemia<br />

in 4 siblings of a Libyan famili-autosomal inheritance. Acta Haematol<br />

(Basel) 1982; 68: 321.<br />

29. Hamel BCJ, Schretlen EDAm. Sideroblastic anaemia. A review of seven<br />

paediatric cases. Eur J Pediatr 1982; 138: 130.<br />

30. Fujita H etal. Erythroleukemia differentiation: Distinctive responses of<br />

the erythroid-specific and the nonspecific delta.-aminolevulinate<br />

mRNA. J Biol Chem 1991; 266: 17494.<br />

31. Conboy JG, Cox TC, Bottomley SS, Bawden MJ, May BK. Human erythroid<br />

5-aminolevulinate synthase. Gene structure and species-specific<br />

differences in alternative RNA splicing. J Biol Chem 1992; 267: 18753.<br />

32. Pearson Ha et al. A new syndrome of refractory sideroblastic anemia<br />

with vacuolization of marrow precursors and exocrine pancreatic dysfunction.<br />

J Pediatr 1979; 95: 976.<br />

33. Larsson Ng, Holme, KristianssonB, Oldfors A, Tulinius M. Progressive<br />

increase of the mutated mitochondrial DNA Fraction in Kearns-Sayre<br />

syndrome. Pediatr Res 1990; 28: 131.<br />

34. Simonsz HJ, Barlocher K, Rotig A. Kearns-Sayre’s syndrome developing<br />

in a boy who survived Perarson’s syndrome caused by mitochondrial<br />

DNA deletion. Doc Ophthalmol 1992; 82: 73.<br />

35. Porteous WK, James AM, Sheard PW, Porteous CM, Packer MA, Hyslop<br />

SJ, Melton JV, Pang CY, Wei YH, Murphy MP. Bioenergetic consequences<br />

of accumulating the common 4977-bp mitochondrial DNA<br />

deletion. Eur J Biochem 1998; 257: 192.<br />

36. Desnick RJ, Glass IA, XU W, Solís C, Astrin KH. Molecular genetics of<br />

congenital erythropoietic porphyria. Sem Liv Dis 1998; 18: 77.<br />

37. Mathews-Roth MM. Anemia in erythopoietic protoporphyria. JAMA<br />

1974; 230: 824.<br />

38. Lamoril J etal. Neonatal hemolytic anemia due to inherited harderoporphyria:<br />

clinical characteristics and molecular basis. Blood 1998; 91:<br />

1453.<br />

39. Nordmann Y, Amran D, Deybach JC, Phung LN, Lesbros D. Coexistent<br />

hereditary coproporphyria and congenital erythopoietic porphyria<br />

(Günther disease). J Inher Metab Dis 1990; 13: 687.<br />

CLINICAL AND MOLECULAR<br />

ASPECTS OF CONGENITAL<br />

DYSERYTHROPOIETIC ANEMIAS<br />

A. IOLASCON<br />

Dpt. of Biomedicine of Evolutive Age – CISME.<br />

University of Bari. Bari, Italy<br />

Dyserythropoiesis is the term used to describe any<br />

alteration of the normal differentiation-proliferation<br />

pathway of the erythroid lineage. This could represent<br />

a physiological condition (i.e.: during the neonatal<br />

period) or a disease (nutritional anemias; myelodysplastic<br />

syndromes; liver disease; PNH; AIDS<br />

and malaria; post bone marrow transplantation and<br />

chemotherapy). The latter could be the principal<br />

(CDA) or a secondary characteristic (thalassemia<br />

syndromes; unstable hemoglobins or thiamine-responsive<br />

anemias) 1 .<br />

The congenital dyserythropoietic anemias (CDA)<br />

comprise a group of hereditary disorders of erythropoiesis,<br />

characterized by ineffective erythropoiesis as<br />

the predominant mechanism of anemia and distinct

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!