15.07.2013 Views

Ce document est le fruit d'un long travail approuvé par le jury de ...

Ce document est le fruit d'un long travail approuvé par le jury de ...

Ce document est le fruit d'un long travail approuvé par le jury de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Bibliographie 123<br />

97. Eisenman, G. et Alvarez, O. Structure and function of channels and channelogs as<br />

studied by computational chemistry. J. Membr. Biol. 119, 109–132 (1991).<br />

98. Luzhkov, V. B. et Åqvist, J. K+/Na+ se<strong>le</strong>ctivity of the KcsA potassium chan-<br />

nel from microscopic free energy perturbation calculations. Biochim. Biophys. Acta<br />

1548, 194–202 (2001).<br />

99. Du<strong>de</strong>v, T. et Lim, C. Determinants of K+ vs Na+ Se<strong>le</strong>ctivity in Potassium Chan-<br />

nels. J. Am. Chem. Soc. 131, 8092–8101 (2009).<br />

100. Eisenberg, B. Ion channels allow atomic control of macroscopic transport. Phys.<br />

Stat. Solid. 5, 708–713 (2008).<br />

101. Illingworth, C. J. et Domene, C. Many-body effects and simulations of potassium<br />

channels. Proc. R. Soc. A 465, 1701–1716 (2009).<br />

102. Patel, S., Davis, J. E. et Bauer, B. A. Exploring Ion Permeation Energetics in<br />

Gramicidin A Using Polarizab<strong>le</strong> Charge Equilibration Force Fields. J. Am. Chem.<br />

Soc. 131, 13890–13891 (2009).<br />

103. Roux, B. et MacKinnon, R. The Cavity and Pore Helices in the KcsA K+ Channel :<br />

E<strong>le</strong>ctrostatic Stabilization of Monova<strong>le</strong>nt Cations. Science 285, 100–102 (1999).<br />

104. Burykin, A., Kato, M. et Warshel, A. Exploring the origin of the ion se<strong>le</strong>ctivity of<br />

the KcsA potassium channel. Proteins : Struct., Funct., Genet. 52, 412–426 (2003).<br />

105. Kato, M., Pisliakov, A. V. et Warshel, A. The barrier for proton transport in aqua-<br />

porins as a chal<strong>le</strong>nge for e<strong>le</strong>ctrostatic mo<strong>de</strong>ls : The ro<strong>le</strong> of protein relaxation in<br />

mutational calculations. Proteins : Struct., Funct., Genet. 64, 829–844 (2006).<br />

106. Chatelain, F. C., Alagem, N., Xu, Q., Pancaroglu, R., Reuveny, E. et Minor, D. L.<br />

The Pore Helix Dipo<strong>le</strong> Has a Minor Ro<strong>le</strong> in Inward Rectifier Channel Function.<br />

Neuron 47, 833–843 (2005).<br />

107. Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., Engel, A.<br />

et Fujiyoshi, Y. Structural <strong>de</strong>terminants of water permeation through aquaporin-1.<br />

Nature 407, 599–605 (2000).<br />

108. Sui, H., Han, B.-G., Lee, J. K., Walian, P. et Jap, B. K. Structural basis of water-<br />

specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).<br />

109. De Groot, B. L., Engel, A. et Grubmül<strong>le</strong>r, H. A refined structure of human<br />

aquaporin-1. FEBS Lett. 504, 206–211 (2001).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!