28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Specific Energy Diagram<br />

y<br />

1<br />

1<br />

2<br />

αV<br />

E =<br />

2g<br />

+ y<br />

Alternate depths: depths with the same specific energy.<br />

Uniform flow: a flow condition where depth and velocity<br />

do not change along a channel.<br />

Manning's Equation<br />

K 2 3 1 2<br />

Q = AR S<br />

n<br />

Q = discharge (m 3 /s or ft 3 /s),<br />

K = 1.486 for USCS units, 1.0 for SI units,<br />

A = cross-sectional area <strong>of</strong> flow (m 2 or ft 2 ),<br />

R = hydraulic radius = A/P (m or ft),<br />

P = wetted perimeter (m or ft),<br />

S = slope <strong>of</strong> hydraulic surface (m/m or ft/ft), and<br />

n = Manning’s roughness coefficient.<br />

Normal depth (uniform flow depth)<br />

2 3 Qn<br />

AR =<br />

1 2<br />

KS<br />

Weir Formulas<br />

Fully submerged with no side restrictions<br />

Q = CLH 3/2<br />

V-Notch<br />

Q = CH 5/2 , where<br />

Q = discharge (cfs or m 3 /s),<br />

C = 3.33 for submerged rectangular weir (USCS units),<br />

C = 1.84 for submerged rectangular weir (SI units),<br />

C = 2.54 for 90° V-notch weir (USCS units),<br />

C = 1.40 for 90° V-notch weir (SI units),<br />

L = weir length (ft or m), and<br />

H = head (depth <strong>of</strong> discharge over weir) ft or m.<br />

Hazen-Williams Equation<br />

V = k1CR 0.63 S 0.54 , where<br />

C = roughness coefficient,<br />

k1 = 0.849 for SI units, and<br />

k1 = 1.318 for USCS units,<br />

R = hydraulic radius (ft or m),<br />

S = slope <strong>of</strong> energy grade line,<br />

= hf /L (ft/ft or m/m), and<br />

V = velocity (ft/s or m/s).<br />

137<br />

CIVIL ENGINEERING (continued)<br />

Values <strong>of</strong> Hazen-Williams Coefficient C<br />

Pipe Material C<br />

Concrete (regardless <strong>of</strong> age)<br />

Cast iron:<br />

130<br />

New 130<br />

5 yr old 120<br />

20 yr old 100<br />

Welded steel, new 120<br />

Wood stave (regardless <strong>of</strong> age) 120<br />

Vitrified clay 110<br />

Riveted steel, new 110<br />

Brick sewers 100<br />

Asbestos-cement 140<br />

Plastic 150<br />

For additional fluids information, see the FLUID<br />

MECHANICS section.<br />

TRANSPORTATION<br />

U.S. Customary Units<br />

a = deceleration rate (ft/sec 2 )<br />

A = algebraic difference in grades (%)<br />

C = vertical clearance for overhead structure (overpass)<br />

located within 200 feet <strong>of</strong> the midpoint <strong>of</strong> the curve<br />

e = superelevation (%)<br />

f = side friction factor<br />

± G = percent grade divided by 100 (uphill grade"+")<br />

h1 = height <strong>of</strong> driver's eyes above the roadway surface (ft)<br />

h2 = height <strong>of</strong> object above the roadway surface (ft)<br />

L = length <strong>of</strong> curve (ft)<br />

Ls = spiral transition length (ft)<br />

R = radius <strong>of</strong> curve (ft)<br />

S = stopping sight distance (ft)<br />

t = driver reaction time (sec)<br />

V = design speed (mph)<br />

Stopping Sight Distance<br />

S =<br />

V<br />

⎛⎛ a ⎞ ⎞<br />

30 ⎜⎜ ⎟ ± G<br />

⎝⎝32.2⎠ ⎟<br />

⎠<br />

2<br />

+ 1.47Vt

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!