28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fourier Transform Pairs<br />

x(t) X(f)<br />

1 δ ( f )<br />

δ () t<br />

1<br />

u (t)<br />

1 1<br />

δ ( f ) +<br />

2 j2π f<br />

Π(/ t τ )<br />

τfsinc( τ f )<br />

sinc( Bt )<br />

1<br />

( f / B)<br />

B Π<br />

Λ(/ t τ )<br />

2<br />

τfsinc ( τ f )<br />

−at<br />

e u() t<br />

te u(t)<br />

at −<br />

a t<br />

e −<br />

2<br />

(at)<br />

e −<br />

cos(2 π ft+θ<br />

)<br />

0<br />

0<br />

sin(2 π ft+θ<br />

)<br />

n=+∞<br />

∑<br />

n=−∞<br />

δ( t −nT<br />

)<br />

s<br />

1<br />

a+ j2πf 1<br />

( a+ j2 πf)<br />

2a<br />

2<br />

2 2<br />

a + (2 πf)<br />

π<br />

e<br />

a<br />

a > 0<br />

2<br />

−π ( f / a)<br />

a > 0<br />

a > 0<br />

1 jθ − jθ<br />

[ e δ( f − f0) + e δ ( f + f0)]<br />

2<br />

1 jθ − jθ<br />

[ e δ( f − f0) −e δ ( f + f0)]<br />

2 j<br />

k =+∞<br />

1<br />

fs ∑ δ( f − kfs) fs<br />

=<br />

T<br />

k =−∞<br />

s<br />

176<br />

ELECTRICAL AND COMPUTER ENGINEERING (continued)<br />

Fourier Transform Theorems<br />

Linearity ax() t + by() t aX ( f ) + bY ( f )<br />

Scale change<br />

x( at )<br />

1 ⎛ f ⎞<br />

X ⎜<br />

a ⎝<br />

⎟<br />

a⎠<br />

Time reversal x( − t)<br />

X( − f)<br />

Duality Xt ()<br />

x( − f )<br />

Time shift x( t t0)<br />

Frequency shift 2<br />

xte () 0 π<br />

− − j2πft0 j ft<br />

X( f) e<br />

X( f − f )<br />

Modulation x()cos2 t π f0t 1<br />

X( f − f0)<br />

2<br />

1<br />

+ X( f + f0)<br />

2<br />

Multiplication x() t y() t X( f) ∗ Y( f)<br />

Convolution x(t) ∗ y() t X( f) Y( f )<br />

n<br />

d x(<br />

t)<br />

Differentiation n<br />

dt<br />

Integration<br />

∫<br />

t<br />

∞<br />

- x λ d<br />

( ) λ<br />

n<br />

0<br />

( j2 π f) X( f)<br />

1<br />

X( f)<br />

j2πf 1<br />

+ X(0) δ(<br />

f)<br />

2<br />

Frequency Response and Impulse Response<br />

The frequency response H(f) <strong>of</strong> a system with input x(t) and<br />

output y(t) is given by<br />

Y( f)<br />

H( f)<br />

=<br />

X( f)<br />

This gives<br />

Y( f) = H( f) X( f)<br />

The response h(t) <strong>of</strong> a linear time-invariant system to a unitimpulse<br />

input δ(t) is called the impulse response <strong>of</strong> the<br />

system. The response y(t) <strong>of</strong> the system to any input x(t) is<br />

the convolution <strong>of</strong> the input x(t) with the impulse response<br />

h(t):<br />

∫<br />

+∞<br />

−∞<br />

yt () = xt () ∗ ht () = x( λ) ht ( −λ) dλ<br />

∫<br />

+∞<br />

−∞<br />

= ht ( ) ∗ xt ( ) = h( λ) xt ( −λ) dλ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!