28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Special Cases <strong>of</strong> Closed Systems<br />

Constant Pressure (Charles' Law): wb = P∆v<br />

(ideal gas) T/v = constant<br />

Constant Volume: wb = 0<br />

(ideal gas) T/P = constant<br />

Isentropic (ideal gas), Pv k = constant:<br />

Constant Temperature (Boyle's Law):<br />

w = (P2v2 – P1v1)/(1 – k)<br />

= R (T2 – T1)/(1 – k)<br />

(ideal gas) Pv = constant<br />

wb = RTln (v2 / v1) = RTln (P1 /P2)<br />

Polytropic (ideal gas), Pv n = constant:<br />

w = (P2v2 – P1v1)/(1 – n)<br />

Open Thermodynamic System<br />

Mass to cross the system boundary<br />

There is flow work (PV) done by mass entering the system.<br />

The reversible flow work is given by:<br />

wrev = – ∫ v dP + ∆KE + ∆PE<br />

First Law applies whether or not processes are reversible.<br />

FIRST LAW (energy balance)<br />

2<br />

i<br />

2<br />

e<br />

Σm � [ h + V 2 + gZ ] − Σm�<br />

[ h + V 2 + gZ<br />

i<br />

Qin net s s<br />

i<br />

+ � −W�<br />

= d ( m u ) dt , where<br />

Wnet � = rate <strong>of</strong> net or shaft work transfer,<br />

ms = mass <strong>of</strong> fluid within the system,<br />

us = specific internal energy <strong>of</strong> system, and<br />

Q� = rate <strong>of</strong> heat transfer (neglecting kinetic and<br />

potential energy).<br />

Special Cases <strong>of</strong> Open Systems<br />

Constant Volume: wrev = – v (P2 – P1)<br />

Constant Pressure: wrev = 0<br />

Constant Temperature: (ideal gas) Pv = constant:<br />

wrev = RTln (v2 /v1) = RTln (P1 /P2)<br />

Isentropic (ideal gas): Pv k = constant:<br />

wrev = k (P2v2 – P1v1)/(1 – k)<br />

= kR (T2 – T1)/(1 – k)<br />

w<br />

rev<br />

e<br />

⎡<br />

( k −1) k<br />

k ⎛ P ⎞ ⎤<br />

⎢<br />

⎥<br />

⎢<br />

⎜ 2<br />

= RT1<br />

−<br />

⎟<br />

k −<br />

⎥<br />

⎣ ⎝ P1<br />

⎠ ⎦<br />

1<br />

1<br />

Polytropic: Pv n = constant<br />

wrev = n (P2v2 – P1v1)/(1 – n)<br />

e<br />

]<br />

57<br />

THERMODYNAMICS (continued)<br />

Steady-State Systems<br />

The system does not change state with time. This<br />

assumption is valid for steady operation <strong>of</strong> turbines, pumps,<br />

compressors, throttling valves, nozzles, and heat<br />

exchangers, including boilers and condensers.<br />

∑ m�<br />

i<br />

2<br />

2<br />

( h + V 2 + gZ ) − ∑ m�<br />

( h + V 2 + gZ )<br />

i<br />

∑ m�<br />

= ∑ m�<br />

i<br />

i<br />

e<br />

i<br />

e<br />

+ Q�<br />

in<br />

e<br />

−W�<br />

e<br />

out<br />

= 0<br />

e<br />

and<br />

m� =<br />

where<br />

mass flow rate (subscripts i and e refer to inlet and<br />

exit states <strong>of</strong> system),<br />

g = acceleration <strong>of</strong> gravity,<br />

Z = elevation,<br />

V = velocity, and<br />

W� = rate <strong>of</strong> work.<br />

Special Cases <strong>of</strong> Steady-Flow Energy Equation<br />

Nozzles, Diffusers: Velocity terms are significant. No<br />

elevation change, no heat transfer, and no work. Single mass<br />

stream.<br />

hi + Vi 2 /2 = he + Ve 2 /2<br />

Efficiency (nozzle) =<br />

V<br />

2<br />

2<br />

e<br />

( h − h )<br />

i<br />

−V<br />

2<br />

i<br />

es<br />

, where<br />

hes = enthalpy at isentropic exit state.<br />

Turbines, Pumps, Compressors: Often considered adiabatic<br />

(no heat transfer). Velocity terms usually can be ignored.<br />

There are significant work terms and a single mass stream.<br />

hi = he + w<br />

hi<br />

− he<br />

Efficiency (turbine) =<br />

h − h<br />

Efficiency (compressor, pump) =<br />

i<br />

e<br />

es<br />

hes<br />

− hi<br />

h − h<br />

Throttling Valves and Throttling Processes: No work, no<br />

heat transfer, and single-mass stream. Velocity terms are<br />

<strong>of</strong>ten insignificant.<br />

hi = he<br />

Boilers, Condensers, Evaporators, One Side in a Heat<br />

Exchanger: Heat transfer terms are significant. For a singlemass<br />

stream, the following applies:<br />

hi + q = he<br />

Heat Exchangers: No heat or work. Two separate flow<br />

m� :<br />

rates 1 m� and 2<br />

�<br />

( h − h ) = m�<br />

( h − h )<br />

m1 1i<br />

1e<br />

2 2e<br />

2i<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!