28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FORCE<br />

A force is a vector quantity. It is defined when its (1)<br />

magnitude, (2) point <strong>of</strong> application, and (3) direction are<br />

known.<br />

RESULTANT (TWO DIMENSIONS)<br />

The resultant, F, <strong>of</strong> n forces with components Fx,i and Fy,i<br />

has the magnitude <strong>of</strong><br />

⎡⎛<br />

F = ⎢⎜<br />

∑<br />

⎢⎣<br />

⎝<br />

1<br />

2<br />

2 2<br />

1 1 ⎥ ⎥<br />

n ⎞ ⎛ n ⎞ ⎤<br />

Fx,<br />

i ⎟ + ⎜ ∑ Fy,<br />

i ⎟<br />

i=<br />

i=<br />

⎠<br />

⎝<br />

The resultant direction with respect to the x-axis using fourquadrant<br />

angle functions is<br />

θ =<br />

⎛ n<br />

arctan ⎜ ∑ F<br />

⎝ i=<br />

1<br />

y,<br />

i<br />

The vector form <strong>of</strong> a force is<br />

F = Fx i + Fy j<br />

n<br />

∑ F<br />

i=<br />

1<br />

⎠<br />

x,<br />

i<br />

RESOLUTION OF A FORCE<br />

Fx = F cos θx; Fy = F cos θy; Fz = F cos θz<br />

cos θx = Fx /F; cos θy = Fy /F; cos θz = Fz /F<br />

Separating a force into components (geometry <strong>of</strong> force is<br />

known R =<br />

2 2 2<br />

x + y + z )<br />

Fx = (x/R)F; Fy = (y/R)F; Fz = (z/R)F<br />

MOMENTS (COUPLES)<br />

A system <strong>of</strong> two forces that are equal in magnitude, opposite<br />

in direction, and parallel to each other is called a couple.<br />

A moment M is defined as the cross product <strong>of</strong> the radius<br />

vector r and the force F from a point to the line <strong>of</strong> action <strong>of</strong><br />

the force.<br />

M = r × F; Mx = yFz – zFy,<br />

My = zFx – xFz, and<br />

Mz = xFy – yFx.<br />

SYSTEMS OF FORCES<br />

F = Σ Fn<br />

M = Σ (rn × Fn)<br />

Equilibrium Requirements<br />

Σ Fn = 0<br />

Σ Mn = 0<br />

⎞<br />

⎟<br />

⎠<br />

⎦<br />

STATICS<br />

24<br />

CENTROIDS OF MASSES, AREAS, LENGTHS,<br />

AND VOLUMES<br />

Formulas for centroids, moments <strong>of</strong> inertia, and first<br />

moment <strong>of</strong> areas are presented in the MATHEMATICS<br />

section for continuous functions. The following discrete<br />

formulas are for defined regular masses, areas, lengths, and<br />

volumes:<br />

rc = Σ mnrn/Σ mn, where<br />

mn = the mass <strong>of</strong> each particle making up the system,<br />

rn = the radius vector to each particle from a selected<br />

<strong>reference</strong> point, and<br />

rc = the radius vector to the center <strong>of</strong> the total mass<br />

from the selected <strong>reference</strong> point.<br />

The moment <strong>of</strong> area (Ma) is defined as<br />

May = Σ xnan<br />

Max = Σ ynan<br />

Maz = Σ znan<br />

The centroid <strong>of</strong> area is defined as<br />

xac = May /A<br />

yac = Max /A<br />

zac = Maz /A<br />

where A = Σ an<br />

The centroid <strong>of</strong> a line is defined as<br />

xlc = (Σ xnln)/L, where L = Σ ln<br />

ylc = (Σ ynln)/L<br />

zlc = (Σ znln)/L<br />

The centroid <strong>of</strong> volume is defined as<br />

xvc = (Σ xnvn)/V, where V = Σ vn<br />

yvc = (Σ ynvn)/V<br />

zvc = (Σ znvn)/V<br />

MOMENT OF INERTIA<br />

The moment <strong>of</strong> inertia, or the second moment <strong>of</strong><br />

area, is defined as<br />

Iy = ∫ x 2 dA<br />

Ix = ∫ y 2 dA<br />

The polar moment <strong>of</strong> inertia J <strong>of</strong> an area about a point is<br />

equal to the sum <strong>of</strong> the moments <strong>of</strong> inertia <strong>of</strong> the area about<br />

any two perpendicular axes in the area and passing through<br />

the same point.<br />

Iz = J = Iy + Ix = ∫ (x 2 + y 2 ) dA<br />

= rp 2 A, where<br />

with respect to center <strong>of</strong><br />

the coordinate system<br />

rp = the radius <strong>of</strong> gyration (see page 25).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!