28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AC POWER<br />

Complex Power<br />

Real power P (watts) is defined by<br />

P = (½)VmaxImax cos θ<br />

= VrmsIrms cos θ<br />

where θ is the angle measured from V to I. If I leads (lags)<br />

V, then the power factor (p.f.),<br />

p.f. = cos θ<br />

is said to be a leading (lagging) p.f.<br />

Reactive power Q (vars) is defined by<br />

Q = (½)VmaxImax sin θ<br />

= VrmsIrms sin θ<br />

Complex power S (volt-amperes) is defined by<br />

S = VI* = P + jQ,<br />

where I* is the complex conjugate <strong>of</strong> the phasor current.<br />

S=VI<br />

θ<br />

P=VIcosθ<br />

Q=VIsin θ<br />

Complex Power Triangle (Inductive Load)<br />

For resistors, θ = 0, so the real power is<br />

P = V I =<br />

2<br />

V<br />

2<br />

/ R = I R<br />

rms rms rms rms<br />

Balanced Three-Phase (3-φ) Systems<br />

The 3-φ line-phase relations are<br />

for a delta<br />

for a wye<br />

VL = Vp<br />

V = 3V = 3V<br />

I = 3I<br />

IL = Ip<br />

L p<br />

L p LN<br />

where subscripts L/P denote line/phase respectively.<br />

A balanced 3-φ delta-connected load impedance can be<br />

converted to an equivalent wye-connect load impedance<br />

using the following relationship<br />

Z ∆ = 3Z Y<br />

The following formulas can be used to determine 3-φ power<br />

for balanced systems.<br />

S = P+ jQ<br />

S = 3VI = 3VI<br />

P P L L<br />

3 P<br />

*<br />

P<br />

3VI L Lcos P jsin<br />

P<br />

( )<br />

S= V I = θ + θ<br />

For balanced 3-φ wye- and delta-connected loads<br />

2<br />

= *<br />

L V<br />

S<br />

Z<br />

2<br />

L = 3 *<br />

V<br />

S<br />

Z<br />

Y<br />

∆<br />

171<br />

ELECTRICAL AND COMPUTER ENGINEERING (continued)<br />

where<br />

S = total 3-φ complex power (VA)<br />

S = total 3-φ apparent power (VA)<br />

P = total 3-φ real power (W)<br />

Q = total 3-φ reactive power (var)<br />

θ P = power factor angle <strong>of</strong> each phase<br />

V L = rms value <strong>of</strong> the line-to-line voltage<br />

V LN = rms value <strong>of</strong> the line-to-neutral voltage<br />

I L = rms value <strong>of</strong> the line current<br />

I P = rms value <strong>of</strong> the phase current<br />

For a 3-φ wye-connected source or load with line-to-neutral<br />

voltages<br />

Van<br />

= VP∠°<br />

0<br />

Vbn<br />

= VP∠−<br />

120°<br />

V = V ∠+ 120°<br />

cn P<br />

The corresponding line-to-line voltages are<br />

V<br />

V<br />

V<br />

= 3V∠ 30°<br />

ab P<br />

= 3V∠− 90°<br />

bc P<br />

= 3V∠+ 150°<br />

ca P<br />

Transformers (Ideal)<br />

Turns Ratio<br />

a = N1<br />

N2<br />

V p<br />

a =<br />

V<br />

=<br />

I<br />

I<br />

s<br />

The impedance seen at the input is<br />

ZP = a 2 ZS<br />

s<br />

p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!