28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Use the cylinder diameter in the evaluation <strong>of</strong> the Nusselt<br />

and Reynolds numbers.<br />

Re n c<br />

1 – 4<br />

4 – 40<br />

40 – 4,000<br />

4,000 – 40,000<br />

40,000 – 250,000<br />

0.330<br />

0.385<br />

0.466<br />

0.618<br />

0.805<br />

0.989<br />

0.911<br />

0.683<br />

0.193<br />

0.0266<br />

For flow past a constant-temperature sphere.<br />

Nu = 2.0 + 0.60Re 0.5 Pr 1/3<br />

(1 < Re < 70,000, 0.6 < Pr < 400)<br />

Use the sphere diameter in the evaluation <strong>of</strong> the Nusselt and<br />

Reynolds numbers.<br />

Conductive Heat Transfer<br />

Steady Conduction with Internal Energy Generation<br />

For one-dimensional steady conduction, the equation is<br />

2<br />

2<br />

d T/dx + Qgen<br />

k = 0 � , where<br />

Qgen � = the heat generation rate per unit volume, and<br />

k = the thermal conductivity.<br />

For a plane wall:<br />

T<br />

Q�<br />

Q�<br />

Q�<br />

L<br />

2<br />

⎛ x<br />

−<br />

⎝<br />

2<br />

⎞<br />

⎛ T − T<br />

⎞⎛<br />

x ⎞<br />

⎛ T + T<br />

gen<br />

( ) ⎜ ⎟ s2<br />

s1<br />

s1<br />

s2<br />

x = 1 + ⎜ ⎟⎜<br />

⎟ + ⎜ ⎟<br />

2k ⎜ 2<br />

L ⎟ 2 ⎝ L ⎠ 2 ⎠<br />

" "<br />

Q Q 2Q L � � � + = , where<br />

1<br />

2<br />

( dT dx)<br />

L<br />

k(<br />

dT dx)<br />

L<br />

"<br />

1 = k −<br />

"<br />

2 = −<br />

⎠<br />

gen<br />

For a long circular cylinder:<br />

⎝<br />

⎠<br />

⎝<br />

⎞<br />

70<br />

1<br />

r<br />

T<br />

d<br />

dr<br />

dT Q�<br />

⎛ ⎞ gen<br />

⎜r<br />

⎟ + = 0<br />

⎝ dr ⎠ k<br />

Q�<br />

2<br />

r ⎛ 2<br />

r ⎞<br />

−<br />

k ⎜ 2 4 r ⎟<br />

⎝ 0 ⎠<br />

gen 0<br />

() r = ⎜1<br />

⎟ + Ts<br />

r Q�<br />

′ = π � , where<br />

2<br />

0 gen Q<br />

HEAT TRANSFER (continued)<br />

Q′ � = the heat-transfer rate from the cylinder per unit<br />

length.<br />

Transient Conduction Using the Lumped Capacitance<br />

Method<br />

If the temperature may be considered uniform within the<br />

body at any time, the change <strong>of</strong> body temperature is given<br />

by<br />

� hA T − T = −ρc<br />

V dT dt<br />

( ) ( )<br />

Q = s ∞ p<br />

The temperature variation with time is<br />

−(<br />

hAs / ρcpV<br />

)t<br />

T – T∞ = (Ti – T∞) e<br />

The total heat transferred up to time t is<br />

Qtotal = ρcPV (Ti – T), where<br />

ρ = density,<br />

V = volume,<br />

cP = heat capacity,<br />

t = time,<br />

As = surface area <strong>of</strong> the body,<br />

T = temperature, and<br />

h = the heat-transfer coefficient.<br />

The lumped capacitance method is valid if<br />

Biot number = Bi = hV/kAs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!